【題目】如圖,點(diǎn)B在線段AE上,∠CAE=∠DAE,∠CBE=∠DBE,試說明:EC=ED.
【答案】理由見解析.
【解析】試題分析:首先根據(jù)∠CBE=∠DBE得出∠ABC=∠ABD,然后得出△ABC和△ABD全等,從而得出AC=AD,然后根據(jù)SAS得出△ACE和△ADE全等,從而得出EC=ED.
試題解析:因?yàn)?/span>∠CBE=∠DBE,∠ABC=180°-∠CBE,∠ABD=180°-∠DBE, 所以∠ABC=∠ABD.
在△ABC和△ABD中, ∠CAE=∠DAE,AB=AB,∠ABC=∠ABD,
所以△ABC≌△ABD(ASA). 所以AC=AD.
在△ACE和△ADE中, AC=AD,∠CAE=∠DAE,AE=AE,
所以△ACE≌△ADE(SAS). 所以EC=ED.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句中,①兩條直線被第三條直線所截,同位角相等;②同角的余角相等;③負(fù)數(shù)有一個(gè)立方根;④相等的角是對頂角;假命題有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動(dòng)圓圓心Q從點(diǎn)O出發(fā),沿著OA方向以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著AB方向也以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5)以P為圓心,PA長為半徑的⊙P與AB、OA的另一個(gè)交點(diǎn)分別為C、D,連結(jié)CD、QC.
(1)當(dāng)t為何值時(shí),點(diǎn)Q與點(diǎn)D重合?
(2)當(dāng)⊙Q經(jīng)過點(diǎn)A時(shí),求⊙P被OB截得的弦長.
(3)若⊙P與線段QC只有一個(gè)公共點(diǎn),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=900,AC=BC=4,M為AB的中點(diǎn),D是射線BC上一個(gè)動(dòng)點(diǎn), 連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)900,得到線段AE,連接DE,N為DE的中點(diǎn), 連接AN,MN.
(1)如圖1,當(dāng)BD=2時(shí),AN= ,NM= ,MN與AB的位置關(guān)系是 .
(2)當(dāng)4<BD<8時(shí).
①依題意補(bǔ)全圖2:
②判斷(1)中MN與AB的位置關(guān)系是否發(fā)生變化,并證明你的結(jié)論.
(3)連接ME,在點(diǎn)D運(yùn)動(dòng)的過程中,當(dāng)BD/的長為何值時(shí),ME的長最小,最小值是多少?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求函數(shù)y=kx+b和y=的表達(dá)式;
(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com