【題目】已知:AB是⊙O的直徑,直線CP切⊙O于點C,過點BBDCPD.

(1)求證:△ACB∽△CDB;

(2)若⊙O的半徑為1,BCP=30°,求圖中陰影部分的面積.

【答案】(1)詳見解析;(2)

【解析】

1)由CP是⊙O的切線, AB是直徑,得出∠BCD=BACACB=90°,進而得到∠ACB=CDB=90°,即可得出結(jié)論;

2)求出△OCB是正三角形,根據(jù)陰影部分的面積=S扇形OCBSOCB計算即可

1)如圖連接OC,

∵直線CP是⊙O的切線,∴∠BCD+∠OCB=90°,

AB是直徑,∴∠ACB=90°,∴∠ACO+∠OCB=90°

∴∠BCD=ACO,

又∵OA=OC,∴∠BAC=ACO,∴∠BCD=BAC,

又∵BDCP

∴∠CDB=90°,∴∠ACB=CDB=90°,

∴△ACB∽△CDB

2)如圖,連接OC

∵直線CP是⊙O的切線,BCP=30°,∴∠OCB=90°-BCP=60°.OC=OB,∴△OCB是正三角形

∵⊙O的半徑為1SOCB=,S扇形OCB==π,

故陰影部分的面積=S扇形OCBSOCB=π﹣

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,E,F,,AF=6,,________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)進行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場比賽.

1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.

2)若已確定甲打第一場,再從其余三位同學(xué)中隨機選取一位,求恰好選中乙同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分有甲、乙兩個不透明的盒子,甲盒子中裝有3張卡片,卡片上分別寫著3、7、9;乙盒子中裝有4張卡片,卡片上分別寫著2、4、6、8;盒子外有一張寫著5的卡片所有卡片的形狀、大小都完全相同現(xiàn)隨機從甲、乙兩個盒子中各取出一張卡片,與盒子外的卡片放在一起,用卡片上標明的數(shù)量分別作為一條線段的長度

1請用樹狀圖或列表的方求這三條線段能組成三角形的概率;

2求這三條線段能組成直角三角形的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,EBC的中點,AD平分∠BAC,EFADACF,若AB=11,AC=15,求FC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某園林部門決定利用現(xiàn)有的349盆甲種花卉和295盆乙種花卉搭配A. B兩種園藝造型共50個,擺放在迎賓大道兩側(cè)。已知搭配一個A種造型需甲種花卉8盆,乙種花卉4盆;搭配一個B種造型需甲種花卉5盆,乙種花卉9盆。

(1)某校九年級某班課外活動小組承接了這個園藝造型搭配方案的設(shè)計,問符合題意的搭配方案有幾種?請你幫助設(shè)計出來;

(2)若搭配一個A種造型的成本是200,搭配一個B種造型的成本是360,試說明(1)中哪種方案成本最低,最低成本是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD,ABAC,點E,F分別是BCAD的中點,連接AECF.

(1)求證:四邊形AECF是矩形;

(2)若AB=8,求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程是關(guān)于x的一元二次方程的是(  )

A. ax2+bx+c=0 B. =2 C. x2+2x=y(tǒng)2-1 D. 3(x+1)2=2(x+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一次函數(shù)的圖象與y軸交于點A,與反比例函數(shù)的圖象交于點

______;______;

C是線段AB上的動點與點A、B不重合,過點C且平行于y軸的直線l交這個反比例函數(shù)的圖象于點D,求面積的最大值;

中面積取得最大值的沿射線AB方向平移一定的距離,得到,若點O的對應(yīng)點落在該反比例函數(shù)圖象上如圖,則點的坐標是______

查看答案和解析>>

同步練習(xí)冊答案