如圖所示,四邊形ABCD為矩形,點O為對角線的交點,∠BOC=120°,AE⊥BO交BO于點E,AB=4,則AE等于


  1. A.
    4數(shù)學公式
  2. B.
    3數(shù)學公式
  3. C.
    2數(shù)學公式
  4. D.
    數(shù)學公式
C
分析:根據(jù)矩形對角線互相平分的性質和∠AOB=60°即可判定△AOB為等邊三角形,則AO=AB,根據(jù)BO即可求BD的值,根據(jù)勾股定理即可求AD的值,根據(jù)面積法可求AE的長度.
解答:矩形對角線互相平分,∠AOB=180°-120°=60°,
∴△AOB為等邊三角形,即AO=BO=AB,
∴BD=2BO=2AB=8,
∴AD==4,
∴AE==2
故選C.
點評:本題考查了勾股定理在直角三角形中的運用,等邊三角形的判定和等邊三角形各邊長相等的性質,本題中根據(jù)勾股定理求AD的值是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、如圖所示,四邊形ABCD是平行四邊形,E,F(xiàn)分別在AD,CB的延長線上,且DE=BF,連接FE分別交AB,CD于點H,G.
(1)觀察圖中有
2
對全等三角形;
(2)聰明的你如果還有時間,請在上圖中連接AF,CE,你將發(fā)現(xiàn)圖中出現(xiàn)了更多的全等三角形.請在下面的橫線上再寫出兩對與(1)不同的全等三角形(不用證明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖所示,四邊形ABCD為⊙O的內(nèi)接四邊形,E為AB延長線的上一點,∠CBE=40°,則∠AOC等于(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,四邊形ABCD中,E、F分別為AD、BC的中點.
(1)當AB∥CD而AD與BC不平行時,四邊形ABCD稱為
 
形,線段EF叫做其
 
,EF與AB+CD的數(shù)量關系為
 
;
(2)當AB與CD不平行,AD與BC也不平行時,猜想EF與AB+CD的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,四邊形ABCD是正方形,E、F是AB、BC的中點,連接EC交DB、DF于G、H,則EG:GH:HC=
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:新課標 讀想練同步測試 七年級數(shù)學(下) 北師大版 題型:044

如圖所示,四邊形AB-CD中,AB∥CD,P為BC上一點,設∠CDP=α,∠CPD=β,試說明,無論點P在BC上如何移動,總有α+β=∠B.

查看答案和解析>>

同步練習冊答案