【題目】如圖,在平面直角坐標系中,已知點A(0,6),B(b,0),且b<0,點C,D分別是OA,AB的中點,△AOB的外角平分線與CD的延長線交于點E.
(1)求證:∠DAO=∠DOA;
(2)①若b=-8,求CE的長;
②若CE=+1,則b=________.
(3)是否存在這樣的b值,使得四邊形OBED為平行四邊形?若存在,請求出此時四邊形OBED對角線的交點坐標;若不存在,請說明理由.
(4)直線AE與x軸交于點F,請用含b的式子直接寫出點F的坐標.
【答案】(1)見解析;(2) ①9, ②-2;(3)見解析;(4) F(b-,0).
【解析】(1)由C,D分別為AO,AB的中點,得到CD∥OB.又由OB⊥AO,得到CD垂直平分AO,由垂直平分線的性質即可得到結論.
(2)①由三角形中位線定理得到CD的長,由角平分線的定義和平行線的性質得到∠DEB=∠DBE,從而得到ED=BD=5,即可得到結論.
②由①得:EC=ED+DC=AB+BO,列方程求解即可得到結論.
(3)由四邊形OBED是平行四邊形,得OB=ED.由ED=BD=AB,得到AB=-2b,于是有(-b)2+62=(-2b)2,解方程得到b的值,進而得到AB的長.設平行四邊形OBED的對角線交點為M,作MH⊥OB于點H,則BM=BD=AB.由OD=DB=OB,得到∠DBO=60°,∠BMH=30°,從而可得到BH,MH, OH,即可得到結論.
(4) 由三角形中位線定理可得FO=2EC.由EC=,得到FO=,即可得到結論.
(1)∵C,D分別為AO,AB的中點,∴CD∥OB.
又∵OB⊥AO,∴CD⊥AC,∴CD垂直平分AO,∴AD=OD,∴∠DAO=∠DOA.
(2)①∵b=-8,∴OB=8,∴CD=OB=4.易得∠DEB=∠DBE,∴ED=BD=AB==5,∴CE=CD+ED=4+5=9.
②由①得:EC=ED+DC=AB+BO,∴,解得:b=-2.故答案為:-2.
(3)存在.理由如下:
如圖,∵四邊形OBED是平行四邊形,∴OB=ED.
∵ED=BD=AB,∴OB=AB.
∵OB=-b,∴AB=-2b,∴(-b)2+62=(-2b)2,解得:b=,∴AB=.設平行四邊形OBED的對角線交點為M,作MH⊥OB于點H,則BM=BD=AB=×=.∵OD=AD,∴OD=DB=OB,∴∠DBO=60°,∴∠BMH=30°,∴BH=,MH=,∴OH==,∴M(,).
(4) ∵EC∥FO,AC=CO,∴FO=2EC.
∵EC=,∴FO=,∴F(,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從一張腰長為60cm,頂角為120°的等腰三角形鐵皮OAB中剪出一個最大的扇形OCD,用此剪下的扇形鐵皮圍成一個圓錐的側面(不計損耗),則該圓錐的高為m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.5米,則梯子頂端A下落了( 。┟祝
A. 0.5 B. 1 C. 1.5 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,六邊形ABCDEF的內(nèi)角都相等,∠DAB=60°,AB=DE,則下列結論成立的個數(shù)是( )
①AB∥DE;②EF∥AD∥BC;③AF=CD;④四邊形ACDF是平行四邊形;⑤六邊形ABCDEF既是中心對稱圖形,又是軸對稱圖形.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與兩坐標軸的交點分別為A、B、C,且OA=OC=1,則下列關系中正確的是( )
A.a+b=﹣1
B.a﹣b=﹣1
C.b<2a
D.ac<0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解中學生獲取信息的主要渠道,設置“A:報紙,B:電視,C:網(wǎng)絡,D:身邊的人,E:其他”五個選項(五項中必選且只能選一項)的調(diào)查問卷,先隨機抽取50名中學生進行該問卷調(diào)查,根據(jù)調(diào)查的結果繪制條形圖如圖,該調(diào)查的方式和圖中a的值分別是( )
A. 抽樣調(diào)查,24 B. 普查,24 C. 抽樣調(diào)查,26 D. 普查,26
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖.
(1)求證:△ADC≌△CEB;
(2)從三角板的刻度可知AC=25cm,請你幫小明求出砌墻磚塊的厚度a的大。繅K磚的厚度相等).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學七年級四班的同學在體檢中測量了自己的身高,并求出了該班同學的平均身高.
(1)下表給出了該班5名同學的身高情況(單位:cm),試完成該表,并求出該班同學的平均身高.
姓名 | 劉杰 | 劉濤 | 李明 | 張春 | 劉建 |
身高 | 161 |
|
| 165 | 155 |
身高與全班同 學平均身高差 | +3 | ﹣1 | 0 |
|
|
(2)誰最高?誰最矮?
(3)計算這5名同學的平均身高是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC.M、N分別是AB、AC的中點,D、E為BC上的點,連接DN、EM.若AB=13cm,BC=10cm,DE=5cm,則圖中陰影部分的面積為cm2 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com