(1999•福州)已知兩圓的半徑分別為R和r(R>r),圓心距為d,且d2+R2-r2=2dR,那么兩圓的位置關(guān)系為( )
【答案】分析:根據(jù)兩圓位置關(guān)系與數(shù)量關(guān)系間的聯(lián)系即可求解.
外離,則d>R+r;外切,則d=R+r;相交,則R-r<d<R+r;內(nèi)切,則d=R-r;內(nèi)含,則d<R-r.
(d表示圓心距,R,r分別表示兩圓的半徑).
解答:解:∵兩圓的半徑分別為R和r(R>r),圓心距為d,且d2+R2-r2=2dR,
∴d2-2dR+R2=r2(d-R)2=r2
∴d-R=r或d-R=-r,即d=R+r或d=R-r;
∴兩圓的位置關(guān)系為外切或內(nèi)切.
故選D.
點評:本題難度中等,主要考查圓與圓的位置關(guān)系與數(shù)量關(guān)系間的聯(lián)系.此類題為中考熱點,需重點掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(1999•福州)已知:二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A(-1,12)、B(2,-3).
(1)求該二次函數(shù)的解析式;
(2)用配方法把由(1)所得的解析式化為y=(x-h)2+k的形式,并求出該拋物線的頂點坐標(biāo)和對稱軸;
(3)求拋物線與x軸的兩個交點C、D的坐標(biāo)及△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年福建省福州市中考數(shù)學(xué)試卷 題型:解答題

(1999•福州)已知:二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A(-1,12)、B(2,-3).
(1)求該二次函數(shù)的解析式;
(2)用配方法把由(1)所得的解析式化為y=(x-h)2+k的形式,并求出該拋物線的頂點坐標(biāo)和對稱軸;
(3)求拋物線與x軸的兩個交點C、D的坐標(biāo)及△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:解答題

(1999•福州)已知:如圖,AD∥BC,AD=CB,AE=CF.求證:△AFD≌△CEB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(1999•福州)已知一次函數(shù)y=(m為實數(shù))的圖象為直線l,l分別交x,y于A,B兩點,以坐標(biāo)原點O為圓心的圓的半徑為1.
(1)求A、B兩點的坐標(biāo)(用含m的代數(shù)式表示);
(2)設(shè)點O到直線l的距離為d,試用含m的代數(shù)式表示d,并求出當(dāng)直線1與⊙O相切時,m的值;
(3)當(dāng)⊙O被直線l所截得的弦長等于1時,求m的值及直線l與⊙O的交點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年福建省福州市中考數(shù)學(xué)試卷 題型:填空題

(1999•福州)已知二次函數(shù)y=ax2+bx+c的圖象大致如圖,那么直線y=bx+c不經(jīng)過第    象限.

查看答案和解析>>

同步練習(xí)冊答案