【題目】如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點(diǎn),AD=AB,AD,BC的延長(zhǎng)線相交于點(diǎn)E.
(1)求證:AD是半圓O的切線;
(2)連結(jié)CD,求證:∠A=2∠CDE;
(3)若∠CDE=27°,OB=2,求的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).
【解析】
試題分析:(1)連接OD,BD,根據(jù)圓周角定理得到∠ABO=90°,根據(jù)等腰三角形的性質(zhì)得到∠ABD=∠ADB,∠DBO=∠BDO,根據(jù)等式的性質(zhì)得到∠ADO=∠ABO=90°,根據(jù)切線的判定定理即可得到即可;
(2)由AD是半圓O的切線得到∠ODE=90°,于是得到∠ODC+∠CDE=90°,根據(jù)圓周角定理得到∠ODC+∠BDO=90°,等量代換得到∠DOC=2∠BDO,∠DOC=2∠CDE即可得到結(jié)論;
(3)根據(jù)已知條件得到∠DOC=2∠CDE=54°,根據(jù)平角的定義得到∠BOD=180°﹣54°=126°,然后由弧長(zhǎng)的公式即可計(jì)算出結(jié)果.
試題解析:(1)證明:連接OD,BD,∵AB是⊙O的直徑,∴AB⊥BC,即∠ABO=90°,∵AB=AD,∴∠ABD=∠ADB,∵OB=OD,∴∠DBO=∠BDO,∴∠ABD+∠DBO=∠ADB+∠BDO,∴∠ADO=∠ABO=90°,∴AD是半圓O的切線;
(2)證明:由(1)知,∠ADO=∠ABO=90°,∴∠A=360°﹣∠ADO﹣∠ABO﹣∠BOD=180°﹣∠BOD,∵AD是半圓O的切線,∴∠ODE=90°,∴∠ODC+∠CDE=90°,∵BC是⊙O的直徑,∴∠ODC+∠BDO=90°,∴∠BDO=∠CDE,∵∠BDO=∠OBD,∴∠DOC=2∠BDO,∴∠DOC=2∠CDE,∴∠A=∠CDE;
(3)解:∵∠CDE=27°,∴∠DOC=2∠CDE=54°,∴∠BOD=180°﹣54°=126°,∵OB=2,∴的長(zhǎng)==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題:(1)(2)
(1)計(jì)算: ﹣(﹣2)+(﹣1)0﹣( )﹣1+
(2)比較 與0.5的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù)a,b在數(shù)軸上的對(duì)應(yīng)點(diǎn)的位置如圖所示,則下列式子中正確的是( )
①b<0<a;②|b|<|a|;③ab>0;④a-b>a+b。
A.①②
B.①④
C.②③
D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在射線OA上,CE平分∠ACD. OF平分∠COB并與射線CD交于點(diǎn)F。
(1)依題意補(bǔ)全圖形;
(2)若∠COB+∠OCD=180°,求證:∠ACE=∠COF。
請(qǐng)將下面的證明過(guò)程補(bǔ)充完整。
證明:∵CE平分∠ACD,OF平分∠COB,
∴∠ACE= , ∠COF= ∠COB。
(理由: )
∵點(diǎn)C在射線OA上,
∴∠ACD+∠OCD=180°。
∵∠COB+∠OCD=180°,
∴∠ACD=∠。
(理由: )
∴∠ACE=∠COF。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,AB=8.
(1)利用尺規(guī),作∠CAB的平分線,交⊙O于點(diǎn)D;(保留作圖痕跡,不寫(xiě)作法)
(2)在(1)的條件下,連接CD,OD,若AC=CD,求∠B的度數(shù);
(3)在(2)的條件下,OD交BC于點(diǎn)E.求出由線段ED,BE,所圍成區(qū)域的面積.(其中表示劣弧,結(jié)果保留π和根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若 m>n,則下列各式中一定成立的是( )
A.m﹣2>n﹣3B.m﹣5<n﹣5C.﹣2m>﹣2nD.3m<4n
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將n個(gè)邊長(zhǎng)都為1cm的正方形按如圖所示的方法擺放,點(diǎn)A1 , A2 , …,An分別是正方形對(duì)角線的交點(diǎn),則n個(gè)正方形重疊形成的重疊部分的面積和為( )
A.cm2
B.cm2
C.cm2
D.( )ncm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,所示是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(5,0),對(duì)稱(chēng)軸為直線x=1,下列結(jié)論中錯(cuò)誤的是( )
A.a(chǎn)bc>0
B.當(dāng)x<1時(shí),y隨x的增大而增大
C.a(chǎn)+b+c>0
D.方程ax2+bx+c=0的根為x1=﹣3,x2=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】手工課上,老師要求同學(xué)們將邊長(zhǎng)為4cm的正方形紙片恰好剪成六個(gè)等腰直角三角形,聰明的你請(qǐng)?jiān)谙铝兴膫(gè)正方形中畫(huà)出不同的剪裁線,并直接寫(xiě)出每種不同分割后得到的最小等腰直角三角形面積(注:不同的分法,面積可以相等)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com