【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(0,3),B(3,0),C(4,3).

(1)求拋物線的函數(shù)表達(dá)式;

(2)求拋物線的頂點(diǎn)坐標(biāo)和對稱軸;

(3)把拋物線向上平移,使得頂點(diǎn)落在x軸上,直接寫出兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖中陰影部分).

【答案】解:(1)拋物線經(jīng)過點(diǎn)A(0,3),B(3,0),C(4,3),

,解得。

拋物線的函數(shù)表達(dá)式為。

(2)

拋物線的頂點(diǎn)坐標(biāo)為(2,﹣1),對稱軸為直線x=2。

(3)如圖,拋物線的頂點(diǎn)坐標(biāo)為(2,﹣1),PP′=1。

又由平移的性質(zhì)知,陰影部分的面積等于平行四邊形A′APP′的面積,

而平行四邊形A′APP′的面積=1×2=2。

陰影部分的面積=2。

【解析】

試題分析:(1)把點(diǎn)A、B、C代入拋物線解析式利用待定系數(shù)法求解即可。

(2)把拋物線解析式整理成頂點(diǎn)式形式,然后寫出頂點(diǎn)坐標(biāo)與對稱軸即可。

(3)根據(jù)頂點(diǎn)坐標(biāo)求出向上平移的距離,再根據(jù)陰影部分的面積等于平行四邊形的面積,列式進(jìn)行計(jì)算即可得解。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、CD 分別為兩圓的弦,AC、BD 為兩圓的公切線且相交于點(diǎn) P.若 PC=2,DB=6,∠APB=90°.

(1)PAB 的周長.

(2)PAB PCD 的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點(diǎn)的坐標(biāo)為(,1),下列結(jié)論:①c0;②b24ac0;③a+b=0;④4acb24a,其中錯(cuò)誤的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,CDAB邊上高,若AD=16,CD=12BD=9

1)求ABC的周長;

2)判斷ABC的形狀并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣bx+c交x軸于點(diǎn)A(1,0),交y軸于點(diǎn)B,對稱軸是x=2.

(1)求拋物線的解析式;

(2)點(diǎn)P是拋物線對稱軸上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)P,使PAB的周長最。咳舸嬖,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為:A(﹣2,1),B(﹣3,﹣1),C1,﹣1).若以A,BC,D為頂點(diǎn)的四邊形為平行四邊形,那么點(diǎn)D的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為4,點(diǎn)E,F分別在AD,DC上,AEDF1,BEAF相交于點(diǎn)G,點(diǎn)HBF的中點(diǎn),連接GH,則GH的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課間,小明拿著老師的等腰直角三角尺玩,不小心掉到兩堆磚塊之間,如圖所示.

1)求證:ADC≌△CEB;

2)已知DE35cm,請你幫小明求出磚塊的厚度a的大。繅K磚的厚度相同).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC為等邊三角形,P是直線AC上一點(diǎn),ADBPD,以AD為邊作等邊ADE(D,E在直線AC異側(cè)).

(1)如圖1,若點(diǎn)P在邊AC上,連CD,且∠BDC=150°,則= ;(直接寫結(jié)果)

(2)如圖2,若點(diǎn)PAC延長線上,DEBCF求證:BF=CF;

(3)在圖2中,若∠PBC=15°,AB=,請直接寫出CP的長

查看答案和解析>>

同步練習(xí)冊答案