【題目】如圖,鐵路MN和公路PQ在點O處交匯,∠QON30°.公路PQA處距離O240.如果火車行駛時,周圍200米以內(nèi)會受到噪音的影響.那么火車在鐵路MN上沿ON方向以72千米/時的速度行駛時,

1A處是否會受到火車的影響,并寫出理由

2)如果A處受噪音影響,求影響的時間.

【答案】(1)見解析;(2)16秒.

【解析】

1)過點AAC⊥ON,求出AC的長,即可判斷是否受影響;

2)設(shè)當火車到B點時開始對A處有噪音影響,直到火車到D點噪音才消失,根據(jù)勾股定理即可求出BD的長,即可求出影響的時間.

1)如圖,過點AAC⊥ON,AB=AD=200米,

∠QON=30°,OA=240米,

AC=120米<200,故受到火車的影響,

2)當火車到B點時開始對A處有噪音影響,此時AB=200,

AB=200,AC=120,

利用勾股定理得出BC=160,同理CD=160.BD=320米,

∴影響的時間為秒.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的高,EAC上一點,BEADF,且有BF=AC, FD=CD。求證:(1) RtBDFRtADC (2) BEAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線EF分別與直線AB,CD相交于點F,E,EM平分∠FED,ABCDH,P分別為直線AB和線段EF上的點。

(1)如圖1,HM平分∠BHP,若HPEF,求∠M的度數(shù)。

(2)如圖2,EN平分∠HEFAB于點N,NQEM于點Q,H在直線AB上運動(不與點F重合)時,探究∠FHE與∠ENQ的關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為1,直線CD經(jīng)過圓心O,交⊙OC、D兩點,直徑ABCD,點M是直線CD上異于點C、O、D的一個動點,AM所在的直線交于⊙O于點N,點P是直線CD上另一點,且PM=PN

1)當點M在⊙O內(nèi)部,如圖一,試判斷PN與⊙O的關(guān)系,并寫出證明過程;

2)當點M在⊙O外部,如圖二,其它條件不變時,(1)的結(jié)論是否還成立?請說明理由;

3)當點M在⊙O外部,如圖三,∠AMO=15°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B在反比例函數(shù)y=的圖象上,過點A、B作x軸的垂線,垂足分別是M、N,射線AB交x軸于點C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為( )

A.2 B.4 C.﹣2 D.﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點P(x1,y1)平移后的對應(yīng)點為P′(x1+6,y1+4)。

(1)請在圖中作出△A′B′C′;(2)寫出點A′、B′、C′的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,點M是邊BA延長線上的動點(不與點A重合),且AM<AB,△CBE由DAM平移得到.若過點E作EHAC,H為垂足,則有以下結(jié)論:點M位置變化,使得DHC=60°時,2BE=DM;無論點M運動到何處,都有DM=HM;③無論點M運動到何處,CHM一定大于135°.其中正確結(jié)論的序號為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=k0)經(jīng)過邊OB的中點CAE的中點D.已知等邊△OAB的邊長為4

(1)求該雙曲線所表示的函數(shù)解析式;

(2)求等邊△AEF的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓E是三角形ABC的外接圓, BAC=45°AOBCO,且BO=2,CO=3,分別以BC、AO所在直線建立x.

1)求三角形ABC的外接圓直徑;

2)求過ABC三點的拋物線的解析式;

3)設(shè)P是(2)中拋物線上的一個動點,且三角形AOP為直角三角形,則這樣的點P有幾個?(只需寫出個數(shù),無需解答過程)

查看答案和解析>>

同步練習(xí)冊答案