問題:對于平面直角坐標系中的任意兩點P1(x1,y1)、P2(x2,y2),我們把|x1-x2|+|y1-y2|叫做P1、P2兩點間的直角距離,記作d(P1,P2).如:P(-2,3)、Q(2,5)則P、Q兩點的直角距離為d(P,Q)=|-2-2|+|3-5|=6
請根據(jù)根據(jù)以上閱讀材料,解答下列問題:
(1)計算M(-2,7),N(-3,-5)的直角距離d(M,N)=______.
(2)已知O為坐標原點,動點P(x,y)滿足d(O,P)=1,則x與y之間滿足的關系式為______.
(3)設P0(x0,y0)是一定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離,試求點M(4,2)到直線y=x+2的直角距離.

解:(1)∵P(-2,3)、Q(2,5)則P、Q兩點的直角距離為d(P,Q)=|-2-2|+|3-5|=6,
∴M(-2,7),N(-3,-5)的直角距離d(M,N)=|-2+3|+|7+5|=13.

(2)∵坐標原點O點坐標為(0,0),動點P(x,y)滿足d(O,P)=1,
∴|0-x|+|0-y|=1,即|x|+|y|=1.

(3)∵Q(x,y)是直線y=x+2上的動點,M(4,2),
∴Q(x,x+2),
∴d(M,Q)=|4-x|+|2-(x+2)|=|4-x|+|-x|,
∵當x=0時,代數(shù)式|4-x|+|-x|有最小值0,
∴點M(4,2)到直線y=x+2的直角距離是4.
故答案為:13;|x|+|y|=1.
分析:(1)根據(jù)題中所給出的兩點的直角距離公式即可得出結論;
(2)根據(jù)坐標原點O點坐標為(0,0),再由兩點的直角距離公式即可得出結論;
(3)先根據(jù)題意得出關于x的式子,再由絕對值的幾何意義即可得出結論.
點評:本題考查的是一次函數(shù)綜合題,涉及到點到直線的距離、絕對值的幾何意義等相關知識,屬新定義型題目,難度不大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料后回答問題:
在平面直角坐標系中,已知x軸上的兩點A(x1,0),B(x2,0)的距離記作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意兩點,我們可以通過構造直角三角形來求A、B間的距離.
如圖,過A、B兩點分別向x軸、y軸作垂線AM1、AN1和BM2、BN2,垂足分別記作M1(x1,0),N1(0,y1)、M2(x2,0),N2(0,y2),直線AN1與BM2交于Q點.
在Rt△ABQ中,|AB|2=|AQ|2+|QB|2,∵|AQ|=|M1M2|=|x2-x1|,|BQ|=|N1N2|=|y2-y1|
∴|AB|2=|x2-x1|2+|y2-y1|2由此得任意兩點A(x1,y1),B(x2,y2)之間的距離公式:|AB|=
|x2-x1|2+|y2-y1|2

如果某圓的圓心為(0,0),半徑為r.設P(x,y)是圓上任一點,根據(jù)“圓上任一點到定點(圓心)的距離都等于定長(半徑)”,我們不難得到|PO|=r,即
(x-0)2+(y-0)2
=r
,整理得:x2+y2=r2.我們稱此式為圓心在精英家教網(wǎng)原點,半徑為r的圓的方程.
(1)直接應用平面內(nèi)兩點間距離公式,求點A(1,-3),B(-2,1)之間的距離;
(2)如果圓心在點P(2,3),半徑為3,求此圓的方程.
(3)方程x2+y2-12x+8y+36=0是否是圓的方程?如果是,求出圓心坐標與半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•燕山區(qū)一模)定義:對于平面直角坐標系中的任意線段AB及點P,任取線段AB上一點Q,線段PQ長度的最小值稱為點P到線段AB的距離,記作d(P→AB).
已知O為坐標原點,A(4,0),B(3,3),C(m,n),D(m+4,n)是平面直角坐標系中四點.根據(jù)上述定義,解答下列問題:
(1)點A到線段OB的距離d(A→OB)=
2
2
2
2
;
(2)已知點G到線段OB的距離d(G→OB)=
5
,且點G的橫坐標為1,則點G的縱坐標為
1-
10
或1+
10
1-
10
或1+
10

(3)當m的值變化時,點A到動線段CD的距離d (A→CD)始終為2,線段CD的中點為M.
①在圖(2)中畫出點M隨線段CD運動所圍成的圖形并求出該圖形的面積.
②點E的坐標為(0,2),m>0,n>0,作MH⊥x軸,垂足為H.是否存在m的值,使得以A、M、H為頂點的三角形與△AOE相似?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•茂名)閱讀下面材料,然后解答問題:
在平面直角坐標系中,以任意兩點P(x1,y1),Q(x2,y2)為端點的線段的中點坐標為(
x1+x2
2
,
y1+y2
2
).如圖,在平面直角坐標系xOy中,雙曲線y=
-3
x
(x<0)和y=
k
x
(x>0)的圖象關于y軸對稱,直線y=
1
2
x
+
5
2
與兩個圖象分別交于A(a,1),B(1,b)兩點,點C為線段AB的中點,連接OC、OB.
(1)求a、b、k的值及點C的坐標;
(2)若在坐標平面上有一點D,使得以O、C、B、D為頂點的四邊形是平行四邊形,請求出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•房縣模擬)問題:對于平面直角坐標系中的任意兩點P1(x1,y1)、P2(x2,y2),我們把|x1-x2|+|y1-y2|叫做P1、P2兩點間的直角距離,記作d(P1,P2).如:P(-2,3)、Q(2,5)則P、Q兩點的直角距離為d(P,Q)=|-2-2|+|3-5|=6
請根據(jù)根據(jù)以上閱讀材料,解答下列問題:
(1)計算M(-2,7),N(-3,-5)的直角距離d(M,N)=
13
13

(2)已知O為坐標原點,動點P(x,y)滿足d(O,P)=1,則x與y之間滿足的關系式為
|x|+|y|=1
|x|+|y|=1

(3)設P0(x0,y0)是一定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離,試求點M(4,2)到直線y=x+2的直角距離.

查看答案和解析>>

同步練習冊答案