【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是BC邊的中點(diǎn),連接AD,分別過點(diǎn)A,C作AE∥BC,CE∥AD交于點(diǎn)E,連接DE,交AC于點(diǎn)O.
(1)求證:四邊形ADCE是矩形;
(2)若AB=10,sin∠COE=,求CE的長.
【答案】(1)證明見解析;(2)CE=.
【解析】
(1)根據(jù)等腰三角形的性質(zhì)得到AD⊥BC于點(diǎn)D,根據(jù)矩形的判定定理即可得到結(jié)論;
(2)過點(diǎn)E作EF⊥AC于F.解直角三角形即可得到結(jié)論.
(1)證明:∵AB=AC,點(diǎn)D是BC邊的中點(diǎn),
∴AD⊥BC于點(diǎn)D.
∵AE∥BC,CE∥AD,
∴四邊形ADCE是平行四邊形.
∴平行四邊形ADCE是矩形.
(2)解: 過點(diǎn)E作EF⊥AC于F.
∵AB=10,
∴AC=10.
∵對(duì)角線AC,DE交于點(diǎn)O,
∴DE=AC=10.
∴OE=5.
∵sin∠COE=,
∴EF=4
∴OF=3.
∵OE=OC=5,
∴CF=2.
∴CE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D.
(1)在圖(1)中,用直尺和圓規(guī)過點(diǎn)D作⊙O的切線DE交BC于點(diǎn)E;(保留作圖痕跡,不寫作法)
(2)如圖(2),如果⊙O的半徑為3,ED=4,延長EO交⊙O于F,連接DF,與OA交于點(diǎn)G,求OG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)F是邊BC的中點(diǎn),連接AF并延長交DC的延長線于點(diǎn)E,連接AC、BE.
(1)求證:AB=CE;
(2)若,則四邊形ABEC是什么特殊四邊形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(1,0),直線y=x+m與該二次函數(shù)的圖象交于A,B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,4),B點(diǎn)在y軸上.P(a,0)是x軸上的一個(gè)動(dòng)點(diǎn),過P作x軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點(diǎn).
(1)求m的值及這個(gè)二次函數(shù)的解析式;
(2)若點(diǎn)P的橫坐標(biāo)為2,求△ODE的面積;
(3)當(dāng)0<a<3時(shí),求線段DE的最大值;
(4)若直線AB與拋物線的對(duì)稱軸交點(diǎn)為N,問是否存在一點(diǎn)P,使以M、N、D、E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元.市場調(diào)査發(fā)現(xiàn),若每箱以50元的價(jià)格銷售,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量(箱)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤(元)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A,對(duì)點(diǎn)A作如下變換:
第一步:作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A1;第二步:以O為位似中心,作線段OA1的位似圖形OA2,且相似比=q,則稱A2是點(diǎn)A的對(duì)稱位似點(diǎn).
(1)若A(2,3),q=2,直接寫出點(diǎn)A的對(duì)稱位似點(diǎn)的坐標(biāo);
(2)已知直線l:y=kx-2,拋物線C:y=-x2+mx-2(m>0).點(diǎn)N(,2k-2)在直線l上.
①當(dāng)k=時(shí),判斷E(1,-1)是否是點(diǎn)N的對(duì)稱位似點(diǎn),請(qǐng)說明理由;
②若直線l與拋物線C交于點(diǎn)M(x1,y1)(x1≠0),且點(diǎn)M不是拋物線的頂點(diǎn),則點(diǎn)M的對(duì)稱位似點(diǎn)是否可能仍在拋物線C上?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a>0)經(jīng)過原點(diǎn)O和點(diǎn)A(2,0),B(﹣1,2)三點(diǎn).
(1)寫出拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(2)點(diǎn)(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大小,并說明理由;
(3)點(diǎn)C與點(diǎn)B關(guān)于拋物線的對(duì)稱軸對(duì)稱,求直線AC的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)長方形地面,請(qǐng)觀察下列圖形,并解答有關(guān)問題:
(1)在第n個(gè)圖中,第一橫行共 塊瓷磚,第一豎列共有 塊瓷磚;(均用含n的代數(shù)式表示)鋪設(shè)地面所用瓷磚的總塊數(shù)為 (用含n的代數(shù)式表示,n表示第n個(gè)圖形)
(2)上述鋪設(shè)方案,鋪一塊這樣的長方形地面共用了506塊瓷磚,求此時(shí)n的值;
(3)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請(qǐng)通過計(jì)算加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)當(dāng)和叮叮玩紙牌游戲:如圖是同一副撲克牌中的4張黑桃牌的正面,將這4張牌正面朝下洗勻后放在桌上,當(dāng)當(dāng)先從中抽出一張,叮叮從剩余的3張牌中也抽出一張,比較兩人抽出的牌面上的數(shù)字,數(shù)字大者獲勝.
(1)求當(dāng)當(dāng)抽出的牌面上的數(shù)字為6的概率;
(2)該游戲是否公平?請(qǐng)用畫樹狀圖或列表的方法說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com