【題目】如圖1所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發(fā),點P沿折線BE﹣ED﹣DC運動到點C時停止,點Q沿BC運動到點C時停止,它們運動的速度都是1cm/秒,設(shè)P、Q同時出發(fā)t秒時,△BPQ的面積為ycm2,已知y與t的函數(shù)關(guān)系圖象如圖2所示,請回答:
(1)線段BC的長為 cm.
(2)當(dāng)運動時間t=2.5秒時,P、Q之間的距離是 cm.
【答案】(1)5;(2);
【解析】
(1)根據(jù)圖2可得,當(dāng)點P到達(dá)點E時,點Q到達(dá)點C,從而可求出BC=BE=5cm;
(2)過點P作PF⊥BC于點F,根據(jù)面積不變時△BPQ的面積為10,可得AB=4,利用三角函數(shù)求出PF的長,再結(jié)合勾股定理求解即可.
解:(1)根據(jù)圖2可得,當(dāng)點P到達(dá)點E時,點Q到達(dá)點C,
∵點P、Q的運動的速度都是1cm/s,
∴BC=BE=5cm.
故答案是:5;
(2)如圖1,過點P作PF⊥BC于點F,
根據(jù)面積不變時△BPQ的面積為10,可得AB=4,
∵AD∥BC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB==,
∴PF=PBsin∠PBF=2.5×=2,
∴在直角△PBF中,由勾股定理得到:BF===1.5,
∴FQ=2.5﹣1.5=1.
∴在直角△PFQ中,由勾股定理得到:PQ===.
故答案是:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在平行四邊形ABCD中,∠C=60°,M、N分別是AD、BC的中點,BC=2CD.
(1)求證:四邊形MNCD是平行四邊形;
(2)求證:BD=MN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,點P是線段BC上的動點(P不與B、C重合),且AD經(jīng)過P點;已知∠B=∠D=30°,BC=DE,AB=AD=10,∠PAC的平分線與∠ACB的平分線交于O.
(1)∠BAD與∠CAE相等嗎?說明其理由;
(2)若AP長為m,請用含m的代數(shù)式表示線段PD的長,并求PD的最大值;
(3)當(dāng)∠BAC=90°時,α°<∠AOC<β°,那么α= ,β= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2,以D(﹣2,1)為直角頂點作該拋物線的內(nèi)接Rt△ADB(即A.D.B均在拋物線上).直線AB必經(jīng)過一定點,則該定點坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點D是△ABC中∠BAC的平分線和BC的垂直平分線的交點,DG⊥AB于點G,DH⊥AC交AC的延長線于點H.
(1)求證:BG=CH;
(2)若AB=12,AC=6,則BG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列分式方程解應(yīng)用題.
為緩解市區(qū)至通州沿線的通勤壓力,北京市政府利用既有國鐵線路富余能力,通過線路及站臺改造,開通了“京通號”城際動車組,每班動車組預(yù)定運送乘客1200人,為提高運輸效率,“京通號”車組對動車車廂進(jìn)行了改裝,使得每節(jié)車廂乘坐的人數(shù)比改裝前多了,運送預(yù)定數(shù)量的乘客所需要的車廂數(shù)比改裝前減少了4節(jié),求改裝后每節(jié)車廂可以搭載的乘客人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=20,BC=10,點P為AB邊上一動點,DP交AC于點Q.
(1)求證:△APQ∽△CDQ;
(2)P點從A點出發(fā)沿AB邊以每秒1個單位長度的速度向B點移動,移動時間為t秒.當(dāng)t為何值時,DP⊥AC?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的直角坐標(biāo)系中,每個小方格都是邊長為1的正方形,△ABC的頂點均在格點上,點A的坐標(biāo)是(﹣3,﹣1).
(1)以O為中心作出△ABC的中心對稱圖形△A1B1C1,并寫出點B1坐標(biāo);
(2)以格點P為旋轉(zhuǎn)中心,將△ABC按順時針方向旋轉(zhuǎn)90°,得到△A′B′C′,且使點A的對應(yīng)點A′的恰好落在△A1B1C1的內(nèi)部格點上(不含△A1B1C1的邊上),寫出點P的坐標(biāo),并畫出旋轉(zhuǎn)后的△A′B′C′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長是( )
A. 2cm B. 2.5cm C. 3cm D. 4cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com