【題目】已知:如圖,在ABCD中,AE⊥BC,CF⊥AD,垂足分別為E、F,AE、CF分別與BD相交于點(diǎn)G、H,聯(lián)結(jié)AH、CG.
求證:四邊形AGCH是平行四邊形.
【答案】證明見解析.
【解析】法1:由平行四邊形對(duì)邊平行,且CF與AD垂直,得到CF與BC垂直,根據(jù)AE與BC垂直,得到AE與CF平行,得到一對(duì)內(nèi)錯(cuò)角相等,利用等角的補(bǔ)角相等得到∠AGB=∠DHC,根據(jù)AB與CD平行,得到一對(duì)內(nèi)錯(cuò)角相等,再由AB=CD,利用AAS得到三角形ABG與三角形CDH全等,利用全等三角形對(duì)應(yīng)邊相等得到AG=CH,利用一組對(duì)邊平行且相等的四邊形為平行四邊形即可得證;
法2:連接AC,與BD交于點(diǎn)O,利用平行四邊形的對(duì)角線互相平分得到OA=OC,OB=OD,再由AB與CD平行,得到一對(duì)內(nèi)錯(cuò)角相等,根據(jù)CF與AD垂直,AE與BC垂直,得一對(duì)直角相等,利用ASA得到三角形ABG與三角形CDH全等,利用全等三角形對(duì)應(yīng)邊相等得到BG=DH,根據(jù)等式的性質(zhì)得到OG=OH,利用對(duì)角線互相平分的四邊形為平行四邊形即可得證.
證明:在□ABCD中,AD∥BC,AB∥CD,
∵CF⊥AD,∴CF⊥BC,
∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,
∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,
∴∠AGB=∠DHC,
∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,
∴AG=CH,
∴四邊形AGCH是平行四邊形;
法2:連接AC,與BD相交于點(diǎn)O,
在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,
∴∠ABG=∠CDH,
∵CF⊥AD,AE⊥BC,
∴∠AEB=∠CFD=90°,
∴∠BAG=∠DCH,
∴△ABG≌CDH,
∴BG=DH,
∴BO﹣BG=DO﹣DH,
∴OG=OH,
∴四邊形AGCH是平行四邊形.
“點(diǎn)睛”此題考查了平行四邊形的判定與性質(zhì),熟練掌握平式子變形的判定與性質(zhì)是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,雙曲線y=(x>0)與直線y=kx-k的交點(diǎn)為點(diǎn)A(m,2).
(1) 求k的值;
(2) 當(dāng)x>0時(shí),直接寫出不等式kx-k ≤的解集:_ ;
(3) 設(shè)直線y=kx-k與y軸交于點(diǎn)B,若C是x軸上一點(diǎn),且滿足△ABC的面積是4,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在,蘇寧商場(chǎng)進(jìn)行促銷活動(dòng),出售一種優(yōu)惠購(gòu)物卡(注:此卡只作為購(gòu)物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場(chǎng)按標(biāo)價(jià)的8折購(gòu)物.
(1)顧客購(gòu)買多少元金額的商品時(shí),買卡與不買卡花錢相等?在什么情況下購(gòu)物合算?
(2)小張要買一臺(tái)標(biāo)價(jià)為3500元的冰箱,如何購(gòu)買合算?小張能節(jié)省多少元錢?
(3)小張按合算的方案,把這臺(tái)冰箱買下,如果商場(chǎng)還能盈利25%,這臺(tái)冰箱的進(jìn)價(jià)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠按用戶的月需求量x(件)完成一種產(chǎn)品的生產(chǎn),其中x>0,每件的售價(jià)為18萬(wàn)元,每件的成本y(萬(wàn)元)是基礎(chǔ)價(jià)與浮動(dòng)價(jià)的和,其中基礎(chǔ)價(jià)保持不變,浮動(dòng)價(jià)與月需求量x(件)成反比,經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),月需求量x與月份n(n為整數(shù),1≤n≤12),符合關(guān)系式x=2n2﹣2kn+9(k+3)(k為常數(shù)),且得到了表中的數(shù)據(jù).
月份n(月) | 1 | 2 |
成本y(萬(wàn)元/件) | 11 | 12 |
需求量x(件/月) | 120 | 100 |
(1)求y與x滿足的關(guān)系式,請(qǐng)說明一件產(chǎn)品的利潤(rùn)能否是12萬(wàn)元;
(2)求k,并推斷是否存在某個(gè)月既無盈利也不虧損;
(3)在這一年12個(gè)月中,若第m個(gè)月和第(m+1)個(gè)月的利潤(rùn)相差最大,求m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)解答過程填空(理由或數(shù)學(xué)式)
如圖,已知∠1=∠2,∠D=60°,求∠B的度數(shù).
解∵∠2=∠3( )
又∵∠1=∠2(已知),
∴∠3=∠1(等量代換)
∴ ∥ ( )
∴∠D+∠B=180°( )
又∵∠D=60°(已知),
∴∠B= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將5個(gè)邊長(zhǎng)為1的正方形按照如圖所示方式擺放,O1,O2,O3,O4,O5是正方形對(duì)角線的交點(diǎn),那么陰影部分面積之和等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是等腰△ABC底邊BC上的高,sinB= ,點(diǎn)E在AC上,且AE:EC=2:3,則tan∠ADE=( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,∠ABC=90°,∠CAB=∠CAD=22.5°,E在AB上,且∠DCE=67.5°,DE⊥AB于E,若AE=1,線段BE的長(zhǎng)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=ax2+bx﹣3經(jīng)過點(diǎn)A(7,﹣3),與x軸正半軸交于點(diǎn)B(m,0)、C(6m、0)兩點(diǎn),與y軸交于點(diǎn)D.
(1)求m的值;
(2)求這條拋物線的表達(dá)式;
(3)點(diǎn)P在拋物線上,點(diǎn)Q在x軸上,當(dāng)∠PQD=90°且PQ=2DQ時(shí),求點(diǎn)P、Q的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com