【題目】如圖,數(shù)軸的單位長(zhǎng)度為1.
(1)如果點(diǎn)A,D表示的數(shù)互為相反數(shù),那么點(diǎn)B表示的數(shù)是多少?
(2)如果點(diǎn)B,D表示的數(shù)互為相反數(shù),那么圖中表示的四個(gè)點(diǎn)中,哪一點(diǎn)表示的數(shù)的絕對(duì)值最大?為什么?
(3)當(dāng)點(diǎn)B為原點(diǎn)時(shí),若存在一點(diǎn)M到A的距離是點(diǎn)M到D的距離的2倍,則點(diǎn)M所表示的數(shù)是____.
【答案】(1)-1;(2)點(diǎn)A表示的數(shù)的絕對(duì)值最大.理由是點(diǎn)A的絕對(duì)值是4最大;(3)2或10;
【解析】
(1)先確定原點(diǎn),再求點(diǎn)B表示的數(shù),
(2)先確定原點(diǎn),再求四點(diǎn)表示的數(shù),
(3)分兩種情況①點(diǎn)M在AD之間時(shí),②點(diǎn)M在D點(diǎn)右邊時(shí)分別求解即可.
(1)根據(jù)題意得到原點(diǎn)O,如圖,則點(diǎn)B表示的數(shù)是-1;
(2)當(dāng)B,D表示的數(shù)互為相反數(shù)時(shí),A表示-4,B表示-2,C表示1,D表示2,
所以點(diǎn)A表示的數(shù)的絕對(duì)值最大.點(diǎn)A的絕對(duì)值是4最大.
(3)2或10.設(shè)M的坐標(biāo)為x.
當(dāng)M在A的左側(cè)時(shí),-2-x=2(4-x),解得x=10(舍去)
當(dāng)M在AD之間時(shí),x+2=2(4-x),解得x=2
當(dāng)M在點(diǎn)D右側(cè)時(shí),x+2=2(x-4),解得x=10
故答案為:①點(diǎn)M在AD之間時(shí),點(diǎn)M的數(shù)是2②點(diǎn)M在D點(diǎn)右邊時(shí)點(diǎn)M表示數(shù)為10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度數(shù);
(2)試判斷OE是否平分∠BOC,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,□ABCD中,O是CD的中點(diǎn),連接AO并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)E.
求證: ≌;
連接,當(dāng)______°和______°時(shí),四邊形ACED是正方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線段AB上一點(diǎn),點(diǎn)D為BC的中點(diǎn),且AB=10cm,BC=4cm
(1)圖中共有 條線段.
(2)求AD的長(zhǎng).
(3)若點(diǎn)E在線段AB上,且AE=3CE,直接寫出BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某股民在上星期買進(jìn)某種股票1000股,每股100元,下表是本周每日該股票的漲跌情況 (單位:元):
(1)該股在本周內(nèi)最高價(jià)是每股多少元?最低價(jià)是每股多少元?
(2)星期三收盤時(shí),每股是多少元?
(3)已知買進(jìn)股票時(shí)需付成交額的1.5‰的手續(xù)費(fèi),賣出時(shí)需付成交額的1.5‰手續(xù)費(fèi)和 1‰的交易費(fèi),如果在星期五收盤前將股票一次性賣出,他的收益情況如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC,點(diǎn)D是線段AB上的一點(diǎn),連接CD.過(guò)點(diǎn)B作BG⊥CD,分別交CD、CA于點(diǎn)E、F,與過(guò)點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連接DF,給出以下三個(gè)結(jié)論:
①;
②若點(diǎn)D是AB的中點(diǎn),則AF=AB;
③若,則S△ABC=6S△BDF;其中正確的結(jié)論的序號(hào)是( )
A. ①②③ B. ①③ C. ①② D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)“中國(guó)夢(mèng)”關(guān)系每個(gè)人的幸福生活,為展現(xiàn)巴中人追夢(mèng)的風(fēng)采,我市某中學(xué)舉行“中國(guó)夢(mèng)我的夢(mèng)”的演講比賽,賽后整理參賽學(xué)生的成績(jī),將學(xué)的成績(jī)分為A,B,C,D四個(gè)等級(jí),并將結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,但均不完整,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題.
(1)參加比賽的學(xué)生人數(shù)共有 名,在扇形統(tǒng)計(jì)圖中,表示“D等級(jí)”的扇形的圓心角為 度,圖中m的值為 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)組委會(huì)決定從本次比賽中獲得A等級(jí)的學(xué)生中,選出2名去參加市中學(xué)生演講比賽,已知A等級(jí)中男生有1名,請(qǐng)用“列表”或“畫(huà)樹(shù)狀圖”的方法求出所選2名學(xué)生中恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)利用求根公式計(jì)算,結(jié)合①②③你能得出什么猜想?
①方程x2+2x+1=0的根為x1=________,x2=________,x1+x2=________,x1·x2=________.
②方程x2-3x-1=0的根為x1=________,x2=________,x1+x2=________,x1·x2=________.
③方程3x2+4x-7=0的根為x1=_______,x2=________,x1+x2=________,x1·x2=________.
(2)利用求根公式計(jì)算:一元二次方程ax2+bx+c=0(a≠0,且b2-4ac≥0)的兩根為x1=________,x2=________,x1+x2=________,x1·x2=________.
(3)利用上面的結(jié)論解決下面的問(wèn)題:
設(shè)x1、x2是方程2x2+3x-1=0的兩個(gè)根,根據(jù)上面的結(jié)論,求下列各式的值:
①; ②.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形在平面直角坐標(biāo)系中, ,,把矩形沿直線對(duì)折使點(diǎn)落在點(diǎn)處,直線與的交點(diǎn)分別為,點(diǎn)在軸上,點(diǎn)在坐標(biāo)平面內(nèi),若四邊形是菱形,則菱形的面積是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com