(2013•懷化)如圖,在△ABC中,∠C=90°,AC+BC=9,點O是斜邊AB上一點,以O為圓心2為半徑的圓分別與AC、BC相切于點D、E.
(1)求AC、BC的長;
(2)若AC=3,連接BD,求圖中陰影部分的面積(π取3.14).
分析:(1)連接OD、OE,得出四邊形CDOE是正方形,推出CE=CD=OD=OE=2,∠DOE=90°,設AD=x,求出BE=5-x,證△OEB∽△ADO,得出
BE
OD
=
OE
AD
,代入求出x即可;
(2)利用AC=3,AD=3-1=2,BC=6,結合陰影部分的面積S=S△ACB-S△ADB-(S正方形CDOE-S扇形ODE)代入求出即可.
解答:解:(1)連接OD、OE,
∵⊙O切BC于E,切AC于D,∠C=90°,
∴∠ADO=∠BEO=90°,∠ODC=∠C=∠OEC=90°,
∵OE=OD=2,
∴四邊形CDOE是正方形,
∴CE=CD=OD=OE=2,∠DOE=90°,
∵∠OEB=∠C=90°,
設AD=x,
∵AC+BC=9,
∴BE=9-2-2-x=5-x,
∴OE∥AC,
∴∠EOB=∠A,
∴△OEB∽△ADO,
BE
OD
=
OE
AD
,
5-x
2
=
2
x

x=1或4,
∴AC=3,BC=6或AC=6,BC=3;


(2)∵AC=3,AD=3-2=1,BC=6,
∴陰影部分的面積S=S△ACB-S△ADB-(S正方形CDOE-S扇形ODE
=
1
2
×3×6-
1
2
×1×6-(2×2-
90π×22
360

=9-3-(4-π)
=2+π
≈5.14.
點評:本題考查了扇形的面積,正方形性質(zhì)和判定,三角形的面積,切線的性質(zhì)的應用,主要考查學生綜合運用性質(zhì)進行計算的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•懷化)如圖,在等腰Rt△ABC中,∠C=90°,正方形DEFG的頂點D在邊AC上,點E、F在邊AB上,點G在邊BC上.
(1)求證:△ADE≌△BGF;
(2)若正方形DEFG的面積為16cm2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•懷化)如圖,在菱形ABCD中,AB=3,∠ABC=60°,則對角線AC=(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•懷化)如圖,為測量池塘邊A、B兩點的距離,小明在池塘的一側選取一點O,測得OA、OB的中點分別是點D、E,且DE=14米,則A、B間的距離是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•懷化)如圖,已知等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,則其面積為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•懷化)如圖,已知直線a∥b,∠1=35°,則∠2=
35°
35°

查看答案和解析>>

同步練習冊答案