【題目】放風箏是大家喜愛的一種運動,星期天的上午小明在市政府廣場上放風箏.如圖,他在A處不小心讓風箏掛在了一棵樹梢上,風箏固定在了D處,此時風箏AD與水平線的夾角為30°,為了便于觀察,小明迅速向前邊移動,收線到達了離A處10米的B處,此時風箏線BD與水平線的夾角為45°.已知點A,B,C在同一條水平直線上,請你求出小明此時所收回的風箏線的長度是多少米?(風箏線AD,BD均為線段, ≈1.414, ≈1.732,最后結果精確到1米).

【答案】解:作DH⊥BC于H,設DH=x米.
∵∠ACD=90°,
∴在直角△ADH中,∠DAH=30°,AD=2DH=2x,AH=DH÷tan30°= x,
在直角△BDH中,∠DBH=45°,BH=DH=x,BD= x,
∵AH﹣BH=AB=10米,
x﹣x=10,
∴x=5( +1),
∴小明此時所收回的風箏的長度為:
AD﹣BD=2x﹣ x=(2﹣ )×5( +1)≈(2﹣1.414)×5×(1.732+1)≈8米
【解析】作DH⊥BC于H,設DH=x米,根據(jù)三角函數(shù)表示出AH于BH的長,根據(jù)AH﹣BH=AB得到一個關于x的方程,解方程求得x的值,進而求得AD﹣BD的長,即可解題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知ABC中,AB=6,AC=9,ADBCD,MAD上任一點,則MC2-MB2等于(  。

A. 9 B. 35 C. 45 D. 無法計算

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關系.

小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.
(1)如圖2,點E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關系,并證明;

(2)如圖3,如圖,∠BAC=90°,AB=AC,點E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(背景知識)

數(shù)軸是初中數(shù)學的一個重要工具,利用數(shù)軸可以將數(shù)與形完美結合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:

例如,若數(shù)軸上點、點表示的數(shù)分別為,則兩點之間的距離,線段的中點表示的數(shù)為

(問題情境)

在數(shù)軸上,點表示的數(shù)為-20,點表示的數(shù)為10,動點從點出發(fā)沿數(shù)軸正方向運動,同時,動點也從點出發(fā)沿數(shù)軸負方向運動,已知運動到4秒鐘時,、兩點相遇,且動點、運動的速度之比是(速度單位:單位長度/秒).

備用圖

(綜合運用)

1)點的運動速度為______單位長度/秒,點的運動速度為______單位長度/秒;

2)當時,求運動時間;

3)若點在相遇后繼續(xù)以原來的速度在數(shù)軸上運動,但運動的方向不限,我們發(fā)現(xiàn):隨著動點、的運動,線段的中點也隨著運動.問點能否與原點重合?若能,求出從、相遇起經(jīng)過的運動時間,并直接寫出點的運動方向和運動速度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關系.

1)如圖1,若ABCD,點PAB、CD內(nèi)部,B=50°,D=30°,求BPD

2)如圖2,將點P移到AB、CD外部,則BPD、B、D之間有何數(shù)量關系?(不需證明)

3)如圖3,寫出BPDBDBQD之間的數(shù)量關系?請證明你的結論.

4)如圖4,求出A+B+C+D+E+F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=36°,∠C=72°,∠DBC=36°.

(1)求∠ABD的度數(shù)。

(2)求證:BC=AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1(注:與圖2完全相同),二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C.

(1)求該二次函數(shù)的解析式;
(2)設該拋物線的頂點為D,求△ACD的面積(請在圖1中探索);
(3)若點P,Q同時從A點出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運動,其中一點到達端點時,另一點也隨之停止運動,當P,Q運動到t秒時,△APQ沿PQ所在的直線翻折,點A恰好落在拋物線上E點處,請直接判定此時四邊形APEQ的形狀,并求出E點坐標(請在圖2中探索).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a、b是給定的整數(shù),某同學分別計算x=-1,1,2,4時代數(shù)式ax+b的值,依次得到下列四個結果,已知其中3個是正確的,那么錯誤的是(

A. B. a+b=5 C. 2a+b=7 D. 4a+b=14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=2,AO=BO,P是直線CO上的一個動點,∠AOC=60°,當△PAB是以BP為直角邊的直角三角形時,AP的長為( )

A. ,1,2 B. ,,2 C. ,,1 D. ,2

查看答案和解析>>

同步練習冊答案