【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)與一次函數(shù)的圖像交于點(diǎn)A.
(1)求點(diǎn)A的坐標(biāo);
(2)設(shè)x軸上一點(diǎn)P(a,b),過點(diǎn)P作x軸的垂線(垂線位于點(diǎn)A的右側(cè)),分別交和的圖像于點(diǎn)B、C,連接OC,若BC=OA,求△OBC的面積.
【答案】(1)A(4,3);(2)28.
【解析】試題分析:(1)點(diǎn)A是正比例函數(shù)與一次函數(shù)圖像的交點(diǎn)坐標(biāo),把與聯(lián)立組成方程組,方程組的解就是點(diǎn)A的橫縱坐標(biāo);(2)過點(diǎn)A作x軸的垂線,在Rt△OAD中,由勾股定理求得OA的長(zhǎng),再由BC=OA求得OB的長(zhǎng),用點(diǎn)P的橫坐標(biāo)a表示出點(diǎn)B、C的坐標(biāo),利用BC的長(zhǎng)求得a值,根據(jù)即可求得△OBC的面積.
試題解析:解:(1)由題意得,,解得,
∴點(diǎn)A的坐標(biāo)為(4,3).
過點(diǎn)A作x軸的垂線,垂足為D,在Rt△OAD中,由勾股定理得,
,
∴.
∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,
∴,解得a=8.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A(-2,1)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是()
A. (2,-1) B. (-2,-1) C. (2,1) D. (1,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將ABCD的邊AB延長(zhǎng)到點(diǎn)E,使BE=AB,連接DE,交邊BC于點(diǎn)F.
(1)求證:△BEF≌△CDF.
(2)連接BD,CE,若∠BFD=2∠A,求證四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖Ⅰ,分別以直角三角形ABC三邊為邊向外作三個(gè)正方形,其面積分別用S1、S2、S3表示,則不難證明S1=S2+S3.
(1)如圖Ⅱ,分別以直角三角形ABC三邊為直徑向外作三個(gè)半圓,其面積分別用S1、S2、S3表示,設(shè)BC=a,AC=b,AB=c,請(qǐng)你確定S1、S2、S3之間的關(guān)系并證明.
(2)如圖Ⅲ,分別以直角三角形ABC三邊為邊向外作三個(gè)正三角形,其面積分別用S1、S2、S3表示,請(qǐng)你確定S1、S2、S3之間的關(guān)系.(不必證明)
(3)若分別以直角三角形ABC三邊為邊向外作三個(gè)正多邊形,其面積分別用S1、S2、S3表示,請(qǐng)你猜想S1、S2、S3之間的關(guān)系?(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面的一列單項(xiàng)式:2x2,4x3,8x4,…,根據(jù)你發(fā)現(xiàn)的規(guī)律,寫出第n個(gè)單項(xiàng)式為_____.(n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AD是△ABC的角平分線,E、F分別是邊AB、AC的中點(diǎn),連接DE、DF,在不再連接其他線段的前提下,要使四邊形AEDF成為菱形,還需添加一個(gè)條件,這個(gè)條件可以是 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列每組數(shù)分別是三根木棒的長(zhǎng)度,能用它們擺成三角形的是( )
A. 3cm,4cm,8cm B. 8cm,7cm,15cm
C. 5cm,5cm,11cm D. 13cm,12cm,20cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com