【題目】在陽光下,小玲同學測得一根長為1米的垂直地面的竹竿的影長為0.6米,同時小強同學測量樹的高度時,發(fā)現(xiàn)樹的影子有一部分0.2米落在教學樓的第一級臺階上,落在地面上的影長為4.42米,每級臺階高為0.3米.小玲說:“要是沒有臺階遮擋的話,樹的影子長度應該是4.62米”;小強說:“要是沒有臺階遮擋的話,樹的影子長度肯定比4.62米要長”.

1)你認為小玲和小強的說法對嗎?

2)請根據(jù)小玲和小強的測量數(shù)據(jù)計算樹的高度;

3)要是沒有臺階遮擋的話,樹的影子長度是多少?

【答案】1)小玲的說法不對,小強的說法對;(2)樹的高度為8米;(3)樹的影子長度是4.8米.

【解析】

1)根據(jù)題意可得小玲的說法不對,小強的說法對;
2)根據(jù)題意可得,DE=0.3EH=0.18,進而可求大樹的影長AF,所以可求大樹的高度;
3)結合(2)即可得樹的影長.

1)小玲的說法不對,小強的說法對,理由如下(2)可得;

2)根據(jù)題意畫出圖形,如圖所示,

根據(jù)平行投影可知:DE0.3,

EH0.3×0.60.18,

∵四邊形DGFH是平行四邊形,

FHDG0.2

AE4.42,

AFAE+EH+FH4.42+0.18+0.24.8,

,

AB8(米).

答:樹的高度為8米.

3)由(2)可知:

AF4.8(米),

答:樹的影子長度是4.8米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:小明為了計算的值 ,采用以下方法:

②-①

1= ;

2 = ;

3)求的和( ,是正整數(shù),請寫出計算過程 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的半徑是3,點A、B、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,創(chuàng)新小組要測量公園內一棵樹的高度AB,其中一名小組成員站在距離樹10米的點E處,測得樹頂A的仰角為54°.已知測角儀的架高CE1.8米,則這顆樹的高度為_________米.(結果保留一位小數(shù).參考數(shù)據(jù):sin54°=0.8090,cos54°=0.5878tan54°=1.3764

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC,已知∠C90,∠B50°,點D在邊BC上,BD2CD (如圖).把△ABC繞著點D逆時針旋轉m0m180)度后,如果點B恰好落在初始RtABC的邊上,那么m=( 。

A.80B.80120C.60120D.80100

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司計劃購買A,B兩種型號的機器人搬運材料.已知A型機器人比B型機器人每小時多搬運30kg材料,且A型機器人搬運1000kg材料所用的時間與B型機器人搬運800kg材料所用的時間相同.

(1)求A,B兩種型號的機器人每小時分別搬運多少材料;

(2)該公司計劃采購A,B兩種型號的機器人共20臺,要求每小時搬運材料不得少于2800kg,則至少購進A型機器人多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D是矩形AOBC的對稱中心,A(0,4),B6,0),若一個反比例函數(shù)的圖象經(jīng)過點D,交AC于點M,則點M的坐標為___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C、點D為⊙O上異于AB的兩點,連接CD,過點CCEDB,交DB的延長線于點E,連接AC、AD、BC,若∠ABD=2BDC

1)求證:CE是⊙0的切線

2)求證:△ABCCBE

3)若⊙O的半徑為5tanBDC=,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線

(1)當m=3時,求拋物線的頂點坐標;

(2)已知點A(1,2).試說明拋物線總經(jīng)過點A

(3)已知點B(0,2),將點B向右平移3個單位長度,得到點C,若拋物線與線段BC只有一個公共點,求m的取值范圍.

查看答案和解析>>

同步練習冊答案