【題目】如圖,如果把圖中任一條線段沿方格線平移1格稱為“1步”,那么要通過平移使圖中的3條線段首尾相接組成一個(gè)三角形,最少需要

A.4步
B.5步
C.6步
D.7步

【答案】B
【解析】

根據(jù)圖示和平移的性質(zhì),注意正確的計(jì)數(shù),查清方格的個(gè)數(shù),從而求出步數(shù).

由圖形知,中間的線段向左平移1個(gè)單位,上邊的直線向右平移2個(gè)單位,最下邊的直線向上平移2個(gè)單位,只有這樣才能使構(gòu)造的三角形平移的次數(shù)最少,其它平移方法都多于5步.
∴通過平移使圖中的3條線段首尾相接組成一個(gè)三角形,最少需要5步.
故選B.


【考點(diǎn)精析】通過靈活運(yùn)用平移的性質(zhì),掌握①經(jīng)過平移之后的圖形與原來的圖形的對應(yīng)線段平行(或在同一直線上)且相等,對應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應(yīng)點(diǎn)所連的線段平行(或在同一直線上)且相等即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時(shí),若船速為26千米/時(shí),水速為2千米/時(shí),求A港和B港相距多少千米.設(shè)A港和B港相距x千米.根據(jù)題意,可列出的方程是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某鐵路橋長500m,現(xiàn)在一列火車勻速通過該橋,火車從開始上橋到過完橋共用了30s,整列火車完全在橋上的時(shí)間為20s,則火車的長度為多少m?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角板ABC的斜邊AB=12cm,∠A=30°,將三角板ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使點(diǎn)B′落在原三角板ABC的斜邊AB上,則三角板A′B′C′平移的距離為( 。

A.6cm
B.(6﹣2)cm
C.3cm
D.(4﹣6)cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直角三角形ABO的周長為100,在其內(nèi)部有n個(gè)小直角三角形周長之和為( )

A.90
B.100
C.110
D.120

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼?/span>n倍,得△AB′C′ ,如圖①所示,∠BAB′ θ ,我們將這種變換記為n]

1)如圖①,對△ABC作變換[60°,]得到△AB′C′ ,則:= ;直線BC與直線B′C′所夾的銳角為 度;

2)如圖②ABC中,∠BAC=30°,ACB=90°,對△ABC作變換,n]得到△AB′C′,使點(diǎn)B、C、在同一直線上,且四邊形ABB′C′為矩形,求θn的值;

3)如圖③,ABC中,AB=ACBAC=36°BC=1,對△ABC作變換n]得到△AB′C′,使點(diǎn)B、CB′在同一直線上,且四邊形ABB′C′為平行四邊形,求θn的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,桌面內(nèi),直線l上擺放著兩塊大小相同的直角三角板,它們中較大銳角的度數(shù)為60°.將△ECD沿直線l向左平移到圖的位置,使E點(diǎn)落在AB上,即點(diǎn)E′,點(diǎn)P為AC與E′D′的交點(diǎn).
(1)求∠CPD′的度數(shù);
(2)求證:AB⊥E′D′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1∥l2 , l1和AB的夾角∠DAB=135°,且AB=50mm,求兩平行線l1和l2之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種商品每件進(jìn)價(jià)為10元,調(diào)查表明:在某段時(shí)間內(nèi)若以每件x元(10≤x≤20x為整數(shù))出售,可賣出(20x)件,若使利潤最大,則每件商品的售價(jià)應(yīng)為_____元.

查看答案和解析>>

同步練習(xí)冊答案