精英家教網 > 初中數學 > 題目詳情

【題目】某校七年級社會實踐小組去某商場調查商品的銷售情況,了解到該商場以每件80元的價格購進了某品牌襯衫500件,并以每件120元的價格銷售了400件,商場準備采取促銷措施,將剩下的襯衫降價銷售.
(1)每件襯衫降價多少元時,銷售完這批襯衫正好達到盈利45%的預期目標?
(2)某公司給員工發(fā)福利,在該商場促銷錢購買了20件該品牌的襯衫發(fā)給員工,后因為有新員工加入,又要購買5件該襯衫,購買這5件襯衫時恰好趕上該商場進行促銷活動,求該公司購買這25件襯衫的平均價格.

【答案】
(1)解:設每件襯衫降價x元,根據題意可得:

(120﹣80)×400+(500﹣400)(120﹣x﹣80)=80×500×45%,

解得:x=20,

答:每件襯衫降價20元時,銷售完這批襯衫正好達到盈利45%的預期目標;


(2)解:由題意可得:[20×120+5×(120﹣20)]÷25=116(元),

答:該公司購買這25件襯衫的平均價格是116元.


【解析】(1)利潤=降價前銷量單件利潤+降價后銷量單件利潤=總進貨額利潤率,構建方程(120﹣80)×400+(500﹣400)(120﹣x﹣80)=80×500×45%;(2)降價前后的總金額25即可求出結果.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在中,,點上,以為半徑的于點的垂直平分線交于點,交于點,連接

1)判斷直線的位置關系,并說明理由;

2)若,,,求線段的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】規(guī)定兩數a,b之間的一種運算,記作(a,b):如果,那么(ab)=c

例如:因為23=8,所以(2,8)=3.

(1)根據上述規(guī)定,填空:

(3,27)=_______,(5,1)=_______,(2,)=_______.

(2)小明在研究這種運算時發(fā)現一個現象:(3n,4n)=(3,4)小明給出了如下的證明:

設(3n,4n)=x,則(3nx=4n,即(3xn=4n

所以3x=4,即(3,4)=x,

所以(3n,4n)=(3,4).

請你嘗試運用這種方法證明下面這個等式:(3,4)+(3,5)=(3,20)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2h,并且甲車途中休息了0.5h,如圖是甲乙兩車行駛的距離ykm)與時間xh)的函數圖象.則下列結論:

1a=40,m=1;

2)乙的速度是80km/h;

3)甲比乙遲h到達B地;

4)乙車行駛小時或小時,兩車恰好相距50km

正確的個數是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,以點P為圓心的圓弧與x軸交于A,B兩點,已知P(4,2)和A(2,0),則點B的坐標是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為學生開展拓展性課程,擬在一塊長比寬多6米的長方形場地內建造由兩個大棚組成的植物養(yǎng)殖區(qū)(如圖1),要求兩個大棚之間有間隔4米的路,設計方案如圖2,已知每個大棚的周長為44米.

(1)求每個大棚的長和寬各是多少?

(2)現有兩種大棚造價的方案,方案一是每平方米60元,超過100平方米優(yōu)惠500元,方案二是每平方米70元,超過100平方米優(yōu)惠總價的20%,試問選擇哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】現計劃把一批貨物用一列火車運往某地已知這列火車可掛A,B兩種不同規(guī)格的貨車廂共40節(jié),使用A型車廂每節(jié)費用6000元,使用B型車廂每節(jié)費用為8000元.

設運送這批貨物的總費用為y元,這列火車掛A型車廂x節(jié),寫出y關于x的函數表達式,并求出自變量x的取值范圍;

已知A型車廂數不少于B型車廂數,運輸總費用不低于276000元,問有哪些不同運送方案?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線l和雙曲線 交于A,B兩點,P是線段AB上的點(不與A,B重合),過點A,B,P分別向x軸作垂線,垂足分別為C,D,E,連接OA,OB,0P,設△AOC的面積為S1、△BOD的面積為S2、△POE的面積為S3 , 則( )

A.S1<S2<S3
B.S1>S2>S3
C.S1=S2>S3
D.S1=S2<S3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)用不同的方法計算如圖中陰影部分的面積得到的等式: ;

2)如圖是兩個邊長分別為、、的直角三角形和一個兩條直角邊都是的直角三角形拼成,試用不同的方法計算這個圖形的面積,你能發(fā)現什么?說明理由;

3)根據上面兩個結論,解決下面問題:若如圖中,直角三邊a、、c,

①滿足ab=18,求的值;

②在①的條件下,若點是邊上的動點,連接,求線段的最小值;

③若,,且,則的值是 .

查看答案和解析>>

同步練習冊答案