【題目】一個袋中有3張形狀大小完全相同的卡片,編號為1、2、3,先任取一張,將其編號記為m,再從剩下的兩張中任取一張,將其編號記為n

(1)請用樹狀圖或者列表法,表示事件發(fā)生的所有可能情況;

(2)求關(guān)于x的方程x2+mx+n=0有兩個不相等實數(shù)根的概率;

(3)任選一個符合(2)題條件的方程,設(shè)此方程的兩根為x1、x2,求的值.

【答案】(1)見解析;(2);(3)見解析.

【解析】

(1)列表得出所有等可能的情況數(shù)即可;

(2)找出使方程有兩個不相等的實數(shù)根的情況,即可求出所求的概率;

(3)利用根與系數(shù)得關(guān)系表示出x1+x2=-m,x1x2=n,進而表示出,若選擇(3,1)或(3,2),代入計算即可求出值.

(1)依題意畫出樹狀圖(或列表)如下

共有6種等可能結(jié)果;

(2)當m2﹣4n>0時,關(guān)于x的方程x2+mx+n=0有兩個不相等實數(shù)根,

而使得m2﹣4n>0m,n2組,即(3,1)和(3,2),

P(方程有兩個不等實根)=;

(3)x1+x2=﹣m,x1x2n,

,

如選擇(3,1),則=﹣3;如選擇(3,2),則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直線交于點E,過點DDFBEBC所在直線于點F

1)求證:四邊形DEBF是菱形;

2)若AB8,AD4,求四邊形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形是菱形,點分別在上,且,點分別在上,相交于點

(1)如圖1,求證:四邊形是菱形;

(2)如圖2,連接,在不添加任何輔助線的情況下,請直接寫出面積相等的四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCCDE都是等邊三角形,點E、F分別在ACBC上,且EFAB

1)求證:四邊形EFCD是菱形;

2)設(shè)CD2,求DF兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱它為下滑數(shù)(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是下滑數(shù)的概率為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標;

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M 達點B時,點M、N同時停止運動,問點MN運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙中,點A,B,P都在格點上.請按要求畫出以AB為邊的格點四邊形,使P在四邊形內(nèi)部不包括邊界上,且P到四邊形的兩個頂點的距離相等.

1在圖甲中畫出一個ABCD.

2在圖乙中畫出一個四邊形ABCD,使D=90°,且A90°注:圖甲、乙在答題紙上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小明設(shè)計的“過一點作已知直線的垂線”的尺規(guī)作圖過程,請你閱讀后完成相應(yīng)任務(wù),如圖,已知直線及上一點.求作:直線,使于點

作法:①在直線外任取一點;②以點為圓心,長為半徑畫弧,交直線于點(不與點重合)③作射線,交①中所畫的弧于點;④作直線,直線就是所求作的直線的垂線.

任務(wù):(1)根據(jù)小明設(shè)計的尺規(guī)作圖過程,補全圖形(要求:尺規(guī)作圖,保留作圖痕跡);

2)證明上述方法得到的直線直線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形ABCD中,O是AC與BD的交點,過點O的直線EF與AB,CD的延長線分別交于點E,F.

(1)求證:△BOE≌△DOF;

(2)當EF與AC滿足什么條件時,四邊形AECF是菱形?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案