【題目】一塊直角三角板ABC按如圖放置,頂點(diǎn)A的坐標(biāo)為(0,1),直角頂點(diǎn)C的坐標(biāo)為(﹣3,0),∠B=30°,則點(diǎn)B的坐標(biāo)為 .

【答案】
【解析】解:過點(diǎn)B作BD⊥OD于點(diǎn)D,
∵△ABC為直角三角形,
∴∠BCD+∠CAO=90°,
∴△BCD∽△COA,

設(shè)點(diǎn)B坐標(biāo)為(x,y),
=,
y=﹣3x﹣9,
∴BC==
AC==,
∵∠B=30°,
==,
解得:x=﹣3﹣,
則y=3
即點(diǎn)B的坐標(biāo)為(﹣3﹣,3).
所以答案是:(﹣3﹣,3).

【考點(diǎn)精析】本題主要考查了相似三角形的判定與性質(zhì)的相關(guān)知識點(diǎn),需要掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解2014年某地區(qū)10萬名大、中、小學(xué)生50米跑成績情況,教育部門從這三類學(xué)生群體中各抽取了10%的學(xué)生進(jìn)行檢測,整理樣本數(shù)據(jù),并結(jié)合2010年抽樣結(jié)果,得到下列統(tǒng)計(jì)圖:

(1)本次檢測抽取了大、中、小學(xué)生共 名,其中小學(xué)生 名.
(2)根據(jù)抽樣的結(jié)果,估計(jì)2014年該地區(qū)10萬名大、中、小學(xué)生中,50米跑成績合格的中學(xué)生人數(shù)為 名.
(3)比較2010年與2014年抽樣學(xué)生50米跑成績合格率情況,寫出一條正確的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩臺機(jī)器共同加工一批零件,在加工過程中兩臺機(jī)器均改變了一次工作效率.從工作開始到加工完這批零件兩臺機(jī)器恰好同時(shí)工作6小時(shí).甲、乙兩臺機(jī)器各自加工的零件個(gè)數(shù)y(個(gè))與加工時(shí)間x(時(shí))之間的函數(shù)圖象分別為折線OA﹣AB與折線OC﹣CD.如圖所示.

(1)求甲機(jī)器改變工作效率前每小時(shí)加工零件的個(gè)數(shù).
(2)求乙機(jī)器改變工作效率后y與x之間的函數(shù)關(guān)系式.
(3)求這批零件的總個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l上有一點(diǎn)P1(2,1),將點(diǎn)P1先向右平移1個(gè)單位,再向上平移2個(gè)單位得到像點(diǎn)P2 , 點(diǎn)P2恰好在直線l上.

(1)寫出點(diǎn)P2的坐標(biāo);
(2)求直線l所表示的一次函數(shù)的表達(dá)式;
(3)若將點(diǎn)P2先向右平移3個(gè)單位,再向上平移6個(gè)單位得到像點(diǎn)P3 . 請判斷點(diǎn)P3是否在直線l上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(﹣3,﹣2).

(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)B(1,m),C(3,n)在該函數(shù)的圖象上,試比較m與n的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以點(diǎn)A為圓心,AC為半徑,作⊙A,交AB于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)E作AB的平行線EF交⊙A于點(diǎn)F,連接AF,BF,DF.

(1)求證:△ABC≌△ABF;
(2)當(dāng)∠CAB等于多少度時(shí),四邊形ADFE為菱形?請給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=1,AB=2

(1)求作⊙O,使它過點(diǎn)A、B、C(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)在(1)所作的圓中,求出劣弧的長l

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長交BC的延長線于點(diǎn)D,點(diǎn)F為BC的中點(diǎn),連接EF.

(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在△ABC中,點(diǎn)O是AC上一點(diǎn),過點(diǎn)O的直線與AB,BC的延長線分別相交于點(diǎn)M,N.

(1)【問題引入】
若點(diǎn)O是AC的中點(diǎn), = ,求 的值;
溫馨提示:過點(diǎn)A作MN的平行線交BN的延長線于點(diǎn)G.
(2)若點(diǎn)O是AC上任意一點(diǎn)(不與A,C重合),求證: =1;
(3)【拓展應(yīng)用】
如圖2所示,點(diǎn)P是△ABC內(nèi)任意一點(diǎn),射線AP,BP,CP分別交BC,AC,AB于點(diǎn)D,E,F(xiàn),若 = , = ,求 的值.

查看答案和解析>>

同步練習(xí)冊答案