【題目】拋物線y=ax2+bx+c上部分點的橫坐標x縱坐標y的對應值如下表,則下列說法中錯誤的是( ).

x

-4

-3

-2

-1

0

1

y

-37

-21

-9

-1

3

3


A.當x>1時y隨x的增大而增大
B.拋物線的對稱軸為x=
C.當x=2時y=-1
D.方程ax2+bx+c=0一個負數(shù)解x1滿足-1<x1<0

【答案】A
【解析】A.由圖表知在對稱軸的左側(cè),y隨x的增大二增大,∴函數(shù)開口向下,當x>1時,y隨x的增大而減少;A符合題意;
B.由圖表知二次函數(shù)的對稱軸為=,故正確,B不符合題意;
C.由函數(shù)對稱性可知,x=2和x=-1的函數(shù)值相同,故正確,C不符合題意;
D.由表格可知,函數(shù)y=0,對應的一個x的值在(-1,0)之間,故正確,D不符合題意;
所以答案是:A.
【考點精析】認真審題,首先需要了解二次函數(shù)的性質(zhì)(增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小),還要掌握二次函數(shù)圖象以及系數(shù)a、b、c的關系(二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c))的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨27噸,2輛大貨車與6輛小貨車一次可以運貨28噸.

1)請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸

2)目前有45噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運貨費用150元,每輛小貨車一次運貨費用100元,請問貨運公司應如何安排車輛最節(jié)省費用?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABD和∠BDC的平分線相交于點E,BECD于點F,∠1+2=90°.試說明:(1)直線AB//CD(2) 如果∠1=55°,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系上有點A1,0),點A第一次向左跳動至A1(﹣1,1),第二次向右跳動至A22,1),第三次向左跳動至A3(﹣2,2),第四次向右跳動至A43,2)…依照此規(guī)律跳動下去,點A124次跳動至A124的坐標(  

A.63,62B.62,61C.(﹣62,61D.124123

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請把下面證明過程補充完整

如圖,已知ADBCD,點EBA的延長線上,EGBCC,交AC于點F,∠E=∠1.求證:AD平分∠BAC

證明:∵ADBCDEGBCG ),

∴∠ADC=∠EGC90° ),

ADEG ),

∴∠1=∠2 ),

_____=∠3 ),

又∵∠E=∠1(已知),∴∠2=∠3 ),

AD平分∠BAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】網(wǎng)格中每一格的邊長為1個單位長度,已知四邊形ABCD的頂點均在網(wǎng)格的格點上.

1)將四邊形ABCD進行平移,使點A移動到點D的位置,得到四邊形DBCD′,畫出平移后的圖形;

2)根據(jù)(1)所畫的圖形,請指出圖中平行的線段;

3)在(1)的基礎上,若∠BDC=65°,求∠BDC′的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有實數(shù)根,則k的取值范圍在數(shù)軸上表示正確的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(3,2),B(1,﹣2),C(1,﹣1).將ABC向右平移3個單位長度,然后再向上平移1個單位長度,可以得到A1B1C1

1A1B1C1的頂點A1的坐標為   ;頂點C1的坐標為   

2)求A1B1C1的面積.

3)已知點Px軸上,以A1、C1P為頂點的三角形面積為,則P點的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種洗衣機在洗滌衣服時,經(jīng)歷了進水、清洗、排水、脫水四個連續(xù)的過程,其中進水、清洗、排水時洗衣機中的水量y()與時間x(分鐘)之間的關系如折線圖所示.根據(jù)圖象解答下列問題:

(1)洗衣機的進水時間是多少分鐘?清洗時洗衣機中水量為多少升?

(2)已知洗衣機的排水速度為每分鐘19升.

①求排水時洗衣機中的水量y()與時間x(分鐘)與之間的關系式;

②如果排水時間為2分鐘,求排水結(jié)束時洗衣機中剩下的水量.

查看答案和解析>>

同步練習冊答案