2、圓心角為n°的扇形的面積是圓的面積的
360
分之
n
.由此我們得出,在扇形統(tǒng)計(jì)圖中,每部分扇形占總體圓的百分比等于該部分所對應(yīng)的扇形的圓心角的度數(shù)與360°的比.
分析:利用扇形面積公式可知扇形面積占圓總面積的比值為圓心角度數(shù)與360°之比.
解答:解:圓心角為n°的扇形的面積是圓的面積的360分之n.
點(diǎn)評:本題考查的是扇形統(tǒng)計(jì)圖的定義.在扇形統(tǒng)計(jì)圖中,各部分占總體的百分比之和為1,每部分占總體的百分比等于該部分所對應(yīng)的扇形圓心角的度數(shù)與360°的比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)高晗和吳逸君兩同學(xué)合作,將半徑為1m、圓心角為90°的扇形薄鐵板圍成一個(gè)圓錐筒,在計(jì)算圓錐的容積(接縫忽略不計(jì))時(shí),吳逸君認(rèn)為圓錐的高就等于扇形的圓心O到弦AB的距離OC(如圖),高晗說這樣計(jì)算不正確.你同意誰的說法?把正確的計(jì)算過程寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

O是邊長為a的正多邊形的中心,將一塊半徑足夠長,圓心角為α的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請你通過觀察或測量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為
 
;
②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為
 

(2)若正多邊形為正方形,扇形的圓心角α=90°時(shí),①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為
 
;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當(dāng)扇形紙板的圓心角α為
 
時(shí),正五邊形的邊被扇形紙板覆蓋部分的總長度仍為定值a.
(4)一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為
 
時(shí),正n邊形的邊被扇形紙板覆蓋部分的總長度為定值a.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

O是邊長為a的正多邊形的中心,將一塊半徑足夠長,圓心角為α的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請你通過觀察或測量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為________;
②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為________;
(2)若正多邊形為正方形,扇形的圓心角α=90°時(shí),①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為________;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當(dāng)扇形紙板的圓心角α為________時(shí),正五邊形的邊被扇形紙板覆蓋部分的總長度仍為定值a.
(4)一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為________時(shí),正n邊形的邊被扇形紙板覆蓋部分的總長度為定值a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

⑴操作:如圖23-1,O是邊長為a的正方形ABCD的中心,將一塊半徑足夠長、圓心角為直角的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).

    求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值a

   ⑵思考:如圖23-2,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或邊長為a的正五邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為__________時(shí),正三角形的邊被紙板覆蓋部分的總長度為定值a;如圖23-3,當(dāng)扇形紙板的圓心角為_________時(shí),正五邊形的邊被紙板覆蓋部分的總長度為定值a.(直接填空)

   ⑶探究:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn),當(dāng)扇形紙板的圓心角為________度時(shí),正n邊形的邊被紙板覆蓋部分的總長度為定值a;

這時(shí)正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關(guān)系(不需證明);若不是定值,請說明理由。

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

⑴操作:如圖23-1,O是邊長為a的正方形ABCD的中心,將一塊半徑足夠長、圓心角為直角的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).

    求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值a

   ⑵思考:如圖23-2,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或邊長為a的正五邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為__________時(shí),正三角形的邊被紙板覆蓋部分的總長度為定值a;如圖23-3,當(dāng)扇形紙板的圓心角為_________時(shí),正五邊形的邊被紙板覆蓋部分的總長度為定值a.(直接填空)

   ⑶探究:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn),當(dāng)扇形紙板的圓心角為________度時(shí),正n邊形的邊被紙板覆蓋部分的總長度為定值a;

這時(shí)正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關(guān)系(不需證明);若不是定值,請說明理由。

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案