【題目】如圖,圖①是一個長為2m,寬為2n的長方形.沿圖中虛線把它分割成四塊完全相同的小長方形,然后按圖②的形狀拼成一個正方形.
(1)求圖②中陰影部分的面積.
(2)觀察圖②,發(fā)現(xiàn)三個代數(shù)式(m+n)2,(m-n)2,mn之間的等量關(guān)系是 .
(3)若x+y=-6,xy=2.75,求x-y的值.
(4)觀察圖③,你能得到怎樣的代數(shù)恒等式?
(5)試畫出一個幾何圖形,使它的面積能表示代數(shù)恒等式(m+n)(m+3n)=m2+4mn+3n2.
【答案】(1)(m-n)2或(m+n)2-4mn;(2) (m-n)=(m+n)-4mn;(3)±5;(4)(m+n)(2m+n)=2m2+3mn+n2;(5)見解析.
【解析】
(1)可直接用正方形的面積公式得到;(2)熟練掌握完全平方公式,并掌握和與差的區(qū)別;(3)此題可參照第二題;(4)可利用各部分面積和=長方形面積列出恒等式;(5)可參照第四題畫圖.
(1)(m-n)2或(m+n)2-4mn.
(2)(m-n)2=(m+n)2-4mn;
(3)(x-y)2=(x+y)2-4xy
=(-6)2-4×2.75
=36-11
=25.
∴x-y=±=±5.
(4)(m+n)(2m+n)=2m2+3mn+n2.
(5)如解圖所示(答案不唯一).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動點(不與點A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.則下列結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正確的是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃購進A,B兩種型號的手機,已知每部A型號手機的進價比每部B型號手機進價多500元,每部A型號手機的售價是2500元,每部B型號手機的售價是2100元.
(1)若商場用50000元共購進A型號手機10部,B型號手機20部,求A、B兩種型號的手機每部進價各是多少元?
(2)為了滿足市場需求,商場決定用不超過7.5萬元采購A、B兩種型號的手機共40部,且A型號手機的數(shù)量不少于B型號手機數(shù)量的2倍.
①該商場有哪幾種進貨方式?
②該商場選擇哪種進貨方式,獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三邊a,b,c,滿足a+b2+|c﹣6|+28=4+10b,則△ABC的外接圓半徑=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對非負有理數(shù)x“四舍五入”到個位的值記為<x>.即n為非負整數(shù)時,如果時, 則<x>=n,例如:<0>=<0.48>=0;<0.64>=<1.493>=1;<2>=2;<3.52>=<4.48>=4;……嘗試解決下列問題:
(1)填空:①<3.49>=__________;②如果<2a-1>=3,那么a的取值范圍是__________;
(2)舉例說明<x+y>=<x> + <y>不恒成立;
(3)求滿足<x>=的所有非負有理數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中C點坐標為(1,2).
(1)寫出點A,B的坐標:A( )、B( );
(2)判斷△ABC的形狀 ;計算△ABC的面積是 .
(3)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到,則的三個頂點坐標分別是( ),( ),( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完善下列解題步輩.井說明解題依據(jù).
如圖,已知∠1=∠2,∠B=∠C,求證:AB∥CD.
證明:∵∠1=∠2(已知)
且∠1=∠CGD(______)
∴∠2=∠CGD(______)
∴______∥______(______),
∴∠C=______(______)
又∵∠B=∠C(已知)
∴______=∠B
AB∥CD(______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的推理過程,在括號內(nèi)填上推理的依據(jù),如圖:
∵∠1+∠2=180°,∠2+∠4=180°(已知)
∴∠1=∠4( )
∴c∥a( )
又∵∠2+∠3=180°(已知 )
∠3=∠6( )
∴∠2+∠6=180°( )
∴a∥b( )
∴c∥b( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,CD平分∠ACB,且∠3=120°,求∠ACB與∠1的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com