【題目】如圖,拋物線=﹣3與=+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結淪:①無論x取何值,的值總是正數(shù);②2a=1;③當x=0時,﹣=4;④2AB=3AC.其中正確結論是______.(填序號)
【答案】①④
【解析】
利用二次函數(shù)的性質得到y2的最小值為1,則可對①進行判斷;把A點坐標代入y1=a(x+2)2-3中求出a,則可對②進行判斷;分別計算x=0時兩函數(shù)的對應值,再計算y2-y1的值,則可對③進行判斷;利用拋物線的對稱性計算出AB和AC,則可對④進行判斷.
解:∵y2=+1,
∴y2的最小值為1,所以①正確;
把A(1,3)代入y1=a(x+2)2-3得a(1+2)2-3=3,
∴3a=2,所以②錯誤;
當x=0時,y1=(x+2)2-3=-, y2=+1=,
∴y2-y1=+=,所以③錯誤;
拋物線y1=a (x+2)2-3的對稱軸為直線x=-2,拋物線y2=+1
的對稱軸為直線x=3,
∴AB=2×3=6,AC=2×2=4,
∴2AB=3AC,所以④正確.
故答案為①④.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將沿弦折疊,使折疊后的劣弧恰好經(jīng)過圓心O,連接并延長交于點C,點P是優(yōu)弧上的動點,連接.
(1)如圖,用尺規(guī)面出折疊后的劣弧所在圓的圓心,并求出的度數(shù);
(2)如圖,若是的切線,,求線段的長;
(3)如圖,連接,過點B作的重線,交的延長線于點D,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《中學生體質健康標準》規(guī)定學生體質健康等級標準為:90分及以上為優(yōu)秀;80分~89分為良好;60分~79分為及格;59分及以下為不及格. 某校從九年級學生中隨機抽取了的學生進行了體質測試,得分情況如下圖.
(1)在抽取的學生中不及格人數(shù)所占的百分比是 ,它的圓心角度數(shù)為 度.
(2)小明按以下方法計算出抽取的學生平均得分是:. 根據(jù)所學的統(tǒng)計知識判斷小明的計算是否正確,若不正確,請計算正確結果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過點A(1,3)、B(3,m).
(1)求反比例函數(shù)的解析式及B點的坐標;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級數(shù)學小組在課外活動中,研究了同一坐標系中兩個反比例函數(shù)與 在第一象限圖象的性質,經(jīng)歷了如下探究過程:
操作猜想:
(1)如圖①,當,時,在軸的正方向上取一點作軸的平行線交于點,交于點.當時,________,________,________;當時,________,________,________;當時,猜想________.
數(shù)學思考:
(2)在軸的正方向上任意取點作軸的平行線,交于點、交于點,請用含、的式子表示的值,并利用圖②加以證明.
推廣應用:
(3)如圖③,若,,在軸的正方向上分別取點、 作軸的平行線,交于點、,交于點、,是否存在四邊形是正方形?如果存在,求的長和點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景
(1)如圖1,△ABC中,DE∥BC分別交AB,AC于D,E兩點,過點E作EF∥AB交BC于點F.請按圖示數(shù)據(jù)填空:
四邊形DBFE的面積 ,
△EFC的面積 ,
△ADE的面積 .
探究發(fā)現(xiàn)
(2)在(1)中,若,,DE與BC間的距離為.請證明.
拓展遷移
(3)如圖2,□DEFG的四個頂點在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試利用(2)中的結論求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“特色江蘇,美好生活”,第十屆江蘇省園藝博覽會在揚州舉行.圓圓和滿滿同學分析網(wǎng)上關于園博會的信息,發(fā)現(xiàn)最具特色的場館有:揚州園,蘇州園,鹽城園,無錫園.他們準備周日下午去參觀游覽,各自在這四個園中任選一個,每個園被選中的可能性相同.
(1)圓圓同學在四個備選園中選中揚州園的概率是 .
(2)用樹狀圖或列表法求出圓圓和滿滿他們選中同一個園參觀的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是雙曲線y=上一點,過A作AB∥x軸,交直線y=-x于點B,點D是x軸上一點,連接BD交雙曲線于點C,連接AD,若BC:CD=3:2,△ABD的面積為,tan∠ABD=,則k的值為( 。
A. -B. -3C. -2D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com