【題目】如圖所示,在平面直角坐標系中,拋物線的頂點坐標為,并與軸交于點,點是對稱軸與軸的交點.

(1)求拋物線的解析式;

(2)如圖①所示, 是拋物線上的一個動點,且位于第一象限,連結(jié)BP、AP,的面積的最大值;

(3)如圖②所示,在對稱軸的右側(cè)作交拋物線于點,求出點的坐標;并探究:軸上是否存在點,使?若存在,求點的坐標;若不存在,請說明理由.

【答案】(1);(2)當時,最大值為;(3)存在,點坐標為,理由見解析

【解析】

(1)利用待定系數(shù)法可求出二次函數(shù)的解析式;

(2)求三角形面積的最值,先求出三角形面積的函數(shù)式.從圖形上看SPAB=SBPO+SAPO-SAOB,設(shè)P求出關(guān)于n的函數(shù)式,從而求SPAB的最大值.

(3) 求點D的坐標,設(shè)D,DDG垂直于ACG,構(gòu)造直角三角形,利用勾股定理或三角函數(shù)值來求t的值即得D的坐標;探究在y軸上是否存在點,使?根據(jù)以上條件和結(jié)論可知∠CAD=120°,是∠CQD2倍,聯(lián)想到同弧所對的圓周角和圓心角,所以以A為圓心,AO長為半徑做圓交y軸與點Q,若能求出這樣的點,就存在Q.

解:拋物線頂點為

可設(shè)拋物線解析式為

代入

拋物線,即

連接

設(shè)點坐標為

時,最大值為

存在,設(shè)點D的坐標為

作對稱軸的垂線,垂足為,

中有

化簡得

(舍去),

∴點D(,-3)

連接,在

在以為圓心,為半徑的圓與軸的交點上

此時

設(shè)點為(0,m), AQ的半徑

AQ=OQ+OA, 6=m+3

綜上所述,點坐標為

故存在點Q,且這樣的點有兩個點.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于點,頂點坐標y軸交在,之間(包含端點),則下列結(jié)論:①;②;③對于任意實數(shù)m總成立;④關(guān)于x的方程有兩個不等的實根. 其中正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象交坐標軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.

(1)求這個二次函數(shù)的解析式;

(2)動點P運動到什么位置時,PBC面積最大,求出此時P點坐標和PBC的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yaxm2+2mm0)經(jīng)過原點,其頂點為P,與x軸的另一交點為A

1P點坐標為   ,A點坐標為   ;(用含m的代數(shù)式表示)

2)求出a,m之間的關(guān)系式;

3)當m0時,若拋物線yaxm2+2m向下平移m個單位長度后經(jīng)過點(11),求此拋物線的表達式;

4)若拋物線yaxm2+2m向下平移|m|個單位長度后與x軸所截的線段長,與平移前相比有什么變化?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,六邊形的六個內(nèi)角都等于,若,則這個六邊形的周長等于____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點EAD的中點,延長CEBA的延長線于點F

1)求證:ABAF;

2)若BC2AB,∠BCD100°,求∠ABE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AC=10BC=6,線段AC的垂直平分線MN分別交AC、ABM、N兩點,則△BCN的面積是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】紅紅和娜娜按下圖所示的規(guī)則玩“錘子、剪刀、布”游戲,

游戲規(guī)則:若一人出“剪刀”,另一人出“布”,則出“剪刀”者勝;若一人出“錘子”,另一人出“剪刀”,則出“錘子”者勝;若一人出“布”,另一人出“錘子”,則出“布”者勝,若兩人出相同的手勢,則兩人平局.

下列說法中錯誤的是

A. 紅紅不是勝就是輸,所以紅紅勝的概率為

B. 紅紅勝或娜娜勝的概率相等

C. 兩人出相同手勢的概率為

D. 娜娜勝的概率和兩人出相同手勢的概率一樣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,AE平分∠BAD交邊BC于E,DF平分∠ADC交邊BC于F,若AD=11,EF=5,則AB=_____

查看答案和解析>>

同步練習冊答案