【題目】黔東南州某超市購進(jìn)甲、乙兩種商品,已知購進(jìn)3件甲商品和2件乙商品,需60元;購進(jìn)2件甲商品和3件乙商品,需65元.
(1)甲、乙兩種商品的進(jìn)貨單價(jià)分別是多少?
(2)設(shè)甲商品的銷售單價(jià)為x(單位:元/件),在銷售過程中發(fā)現(xiàn):當(dāng)11≤x≤19時(shí),甲商品的日銷售量y(單位:件)與銷售單價(jià)x之間存在一次函數(shù)關(guān)系,x、y之間的部分?jǐn)?shù)值對(duì)應(yīng)關(guān)系如表:
銷售單價(jià)x(元/件) | 11 | 19 |
日銷售量y(件) | 18 | 2 |
請(qǐng)寫出當(dāng)11≤x≤19時(shí),y與x之間的函數(shù)關(guān)系式.
(3)在(2)的條件下,設(shè)甲商品的日銷售利潤為w元,當(dāng)甲商品的銷售單價(jià)x(元/件)定為多少時(shí),日銷售利潤最大?最大利潤是多少?
【答案】(1)甲、乙兩種商品的進(jìn)貨單價(jià)分別是10、15元/件;(2)y=﹣2x+40(11≤x≤19).(3)當(dāng)甲商品的銷售單價(jià)定為15元/件時(shí),日銷售利潤最大,最大利潤是50元.
【解析】
(1)設(shè)甲、乙兩種商品的進(jìn)貨單價(jià)分別是a、b元/件,然后列出二元一次方程組并求解即可;
(2)設(shè)y與x之間的函數(shù)關(guān)系式為y=k1x+b1,用待定系數(shù)法求解即可;
(3)先列出利潤和銷售量的函數(shù)關(guān)系式,然后運(yùn)用二次函數(shù)的性質(zhì)求最值即可.
解:(1)設(shè)甲、乙兩種商品的進(jìn)貨單價(jià)分別是a、b元/件,由題意得:
,
解得:.
∴甲、乙兩種商品的進(jìn)貨單價(jià)分別是10、15元/件.
(2)設(shè)y與x之間的函數(shù)關(guān)系式為y=k1x+b1,將(11,18),(19,2)代入得:
,解得:.
∴y與x之間的函數(shù)關(guān)系式為y=﹣2x+40(11≤x≤19).
(3)由題意得:
w=(﹣2x+40)(x﹣10)
=﹣2x2+60x﹣400
=﹣2(x﹣15)2+50(11≤x≤19).
∴當(dāng)x=15時(shí),w取得最大值50.
∴當(dāng)甲商品的銷售單價(jià)定為15元/件時(shí),日銷售利潤最大,最大利潤是50元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小陽在如圖所示的扇形舞臺(tái)上沿O-M-N勻速行走,他從點(diǎn)O出發(fā),沿箭頭所示的方向經(jīng)過點(diǎn)M再走到點(diǎn)N,共用時(shí)70秒.有一臺(tái)攝像機(jī)選擇了一個(gè)固定的位置記錄了小陽的走路過程,設(shè)小陽走路的時(shí)間為t(單位:秒),他與攝像機(jī)的距離為y(單位:米),表示y與t的函數(shù)關(guān)系的圖象大致如圖②,則這個(gè)固定位置可能是圖①中的
A.點(diǎn)Q B.點(diǎn)P C.點(diǎn)M D.點(diǎn)N
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解我市家庭月均用電量情況,有關(guān)部門隨機(jī)抽查了我市1000戶家庭的月均用電量,并將調(diào)查數(shù)據(jù)整理如下:
(1)頻數(shù)分布表中的m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)被調(diào)查的1000戶家庭月均用電量的眾數(shù)落在哪一個(gè)范圍?
(4)求月均用電量小于150度的家庭數(shù)占被調(diào)查家庭總數(shù)的百分比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進(jìn)取”主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出“進(jìn)取”所對(duì)應(yīng)的圓心角的度數(shù).
(3)如果要在這個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售A,B兩款保溫杯,已知B款保溫杯的銷售單價(jià)比A款保溫杯多10元,用480元購買B款保溫杯的數(shù)量與用360元購買A款保溫杯的數(shù)量相同.
(1)A,B兩款保溫杯的銷售單價(jià)各是多少元?
(2)由于需求量大,A,B兩款保溫杯很快售完,該超市計(jì)劃再次購進(jìn)這兩款保溫杯共120個(gè),且A款保溫杯的數(shù)量不少于B保溫杯的2倍,A保溫杯的售價(jià)不變,B款保溫杯的銷售單價(jià)降低10%,兩款保溫杯的進(jìn)價(jià)每個(gè)均為20元,應(yīng)如何進(jìn)貨才能使這批保溫杯的銷售利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為加快5G網(wǎng)絡(luò)建設(shè),某通信公司在一個(gè)坡度i=1:2.4的山坡AB上建了一座信號(hào)塔CD,信號(hào)塔底端C到山腳A的距離AC=13米,在距山腳A水平距離18米的E處,有一高度為10米的建筑物EF,在建筑物頂端F處測(cè)得信號(hào)塔頂端D的仰角為37°(信號(hào)塔及山坡的剖面和建筑物的剖面在同一平面上),則信號(hào)塔CD的高度約是( 。▍⒖紨(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.22.5米B.27.5米C.32.5米D.45.0米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為提高學(xué)生體考成績,對(duì)全校300名九年級(jí)學(xué)生進(jìn)行一分種跳繩訓(xùn)練.為了解學(xué)生訓(xùn)練效果,學(xué)校體育組在九年級(jí)上學(xué)期開學(xué)初和學(xué)期末分別對(duì)九年級(jí)學(xué)生進(jìn)行一分種跳繩測(cè)試,學(xué)生成績均為整數(shù),滿分20分,大于18分為優(yōu)秀.現(xiàn)隨機(jī)抽取了同一部分學(xué)生的兩次成績進(jìn)行整理、描述和分析.(成績得分用x表示,共分成五組:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)
開學(xué)初抽取學(xué)生的成績?cè)?/span>D組中的數(shù)據(jù)是:17,17,17,17,17,18,18.
學(xué)期末抽取學(xué)生成績統(tǒng)計(jì)表
學(xué)生成績 | A組 | B組 | C組 | D組 | E組 |
人數(shù) | 0 | 1 | 4 | 5 | a |
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
開學(xué)初抽取學(xué)生成績 | 16 | b | 17 |
學(xué)期末抽取學(xué)生成績 | 18 | 18.5 | 19 |
根據(jù)以上信息,解答下列問題:
(1)直接寫出圖表中a、b的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)假設(shè)該校九年級(jí)學(xué)生都參加了兩次測(cè)試,估計(jì)該校學(xué)期末成績優(yōu)秀的學(xué)生人數(shù)比開學(xué)初成績優(yōu)秀的學(xué)生人數(shù)增加了多少?
(3)小莉開學(xué)初測(cè)試成績16分,學(xué)期末測(cè)試成績19分,根據(jù)抽查的相關(guān)數(shù)據(jù),請(qǐng)選擇一個(gè)合適的統(tǒng)計(jì)量評(píng)價(jià)小莉的訓(xùn)練效果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,將△ABC沿直線AB翻折得到△ABD,連接CD交AB于點(diǎn)M.E是線段CM上的點(diǎn),連接BE.F是△BDE的外接圓與AD的另一個(gè)交點(diǎn),連接EF,BF,
(1)求證:△BEF是直角三角形;
(2)求證:△BEF∽△BCA;
(3)當(dāng)AB=6,BC=m時(shí),在線段CM正存在點(diǎn)E,使得EF和AB互相平分,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形具有不穩(wěn)定性,對(duì)于四條邊長確定的四邊形.當(dāng)內(nèi)角度數(shù)發(fā)生變化時(shí),其形狀也會(huì)隨之改變.如圖,改變正方形ABCD的內(nèi)角,正方形ABCD變?yōu)榱庑?/span>ABC′D′.若∠D′AB=30°,則菱形ABC′D′的面積與正方形ABCD的面積之比是( )
A.1B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com