【題目】已知:AB為⊙O的直徑,延長AB到點(diǎn)P,過點(diǎn)P作圓O的切線,切點(diǎn)為C,連接AC,且AC=CP.
(1)求∠P的度數(shù);
(2)若點(diǎn)D是弧AB的中點(diǎn),連接CD交AB于點(diǎn)E,且DE·DC=20,求⊙O的面積.(π取3.14)
【答案】(1)∠P=30°;(2)31.4.
【解析】
(1)連接OC,根據(jù)圓的切線的性質(zhì)可得∠2+∠P=90°,根據(jù)等腰三角形的性質(zhì)可得∠P=∠CAO,再根據(jù)三角形外角的性質(zhì)可得∠2=2∠P,進(jìn)而可求出∠P的度數(shù);(2)連接AD,根據(jù)等弧對等角得到∠ACD=∠DAE,故△ACD∽△DAE,然后根據(jù)相似比求出AD的長,再根據(jù)“直徑所對的角是90°”以及AD=BD得到Rt△ADB是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)求出OA的長,進(jìn)而可求出⊙O的面積.
(1)連接,
為的切線,
,即,
,
,
,
,
又是的一個外角,
,
,
;
(2)連接,
為的中點(diǎn),
,
,
,即,
,
,
,
,
是的直徑,
為等腰直角三角形,
,
,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+2x+m的圖象過點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個二次函數(shù)圖象的對稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=,D為AC上一點(diǎn),DE⊥AB于點(diǎn)E,AC=12,BC=5.
(1)求的值;
(2)當(dāng)時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)閱讀資料:
如圖1,在平面之間坐標(biāo)系xOy中,A,B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B兩點(diǎn)間的距離為AB=.
我們知道,圓可以看成到圓心距離等于半徑的點(diǎn)的集合,如圖2,在平面直角坐標(biāo)系xoy中,A(x,y)為圓上任意一點(diǎn),則A到原點(diǎn)的距離的平方為OA2=|x﹣0|2+|y﹣0|2,當(dāng)⊙O的半徑為r時,⊙O的方程可寫為:x2+y2=r2.
問題拓展:如果圓心坐標(biāo)為P(a,b),半徑為r,那么⊙P的方程可以寫為 .
綜合應(yīng)用:
如圖3,⊙P與x軸相切于原點(diǎn)O,P點(diǎn)坐標(biāo)為(0,6),A是⊙P上一點(diǎn),連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長PD交x軸于點(diǎn)B,連接AB.
①證明AB是⊙P的切點(diǎn);
②是否存在到四點(diǎn)O,P,A,B距離都相等的點(diǎn)Q?若存在,求Q點(diǎn)坐標(biāo),并寫出以Q為圓心,以O(shè)Q為半徑的⊙O的方程;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)P是等邊三角形△ABC中一點(diǎn),線段AP繞點(diǎn)A逆時針旋轉(zhuǎn)60°到AQ,連接PQ、QC.
(1)求證:PB=QC;
(2)若PA=3,PB=4,∠APB=150°,求PC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)工會開展“一周工作量完成情況”調(diào)查活動,隨機(jī)調(diào)查了部分員工一周的工作量剩余情況,并將調(diào)查結(jié)果統(tǒng)計(jì)后繪制成如圖 1 和圖 2 所示的不完整統(tǒng)計(jì)圖 .
(1) 被調(diào)查員工的人數(shù)為 人:
(2) 把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3) 若該企業(yè)有員工 10000 人,請估計(jì)該企業(yè)某周的工作量完成情況為“剩少量”的員工有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線L:y=x2+x-6與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),并與y軸相交于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo),并求出△ABC的面積;
(2)將拋物線向左或向右平移,得到拋物線L,且L與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),并與y軸交于點(diǎn)C,要使△ABC和△ABC的面積相等,求所有滿足條件的拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的周長為36,對角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長為( 。
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com