【題目】如圖,在平面直角坐標系中,已知C(3,4),以點C為圓心的圓與y軸相切.點A、B在x軸上,且OA=OB.點P為⊙C上的動點,∠APB=90°,則AB長度的最小值為( 。
A.4B.3C.7D.8
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形紙片中,,,折疊紙片使點落在邊上的處,拆痕為.過點作交于,連接.
(1)求證:四邊形為菱形;
(2)當點在邊上移動時,折痕的端點、也隨之移動;
①當點與點重合時(如圖2),求菱形的邊長;
②若限定、分別在邊、上移動,求的內(nèi)切圓半徑的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為拓寬學生視野,促進書本知識和生活經(jīng)驗的深度融合,我市某中學決定組織部分班級開展研學旅行活動,在參加此次活動的師生中,若每位老師帶名學生,還剩名學生沒人帶;若每位老師帶名學生,則有一位老師少帶名學生.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.
甲種客車 | 已和客車 | |
載客量(人/量) | ||
租金(元/輛) |
學校計劃此次研學旅行活動的租車總費用不超過元,為了安全,每輛客車上至少要有名老師.
(1)參加此次研學旅行活動的老師和學生各有多少人?
(2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有名老師,可求得租用客車總數(shù)為______輛.
(3)在(2)的條件下,你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD是一塊邊長為4米的正方形苗圃,園林部門擬將其改造為矩形AEFG的形狀,其中點E在AB邊上,點G在AD的延長線上,DG= 2BE.設BE的長為x米,改造后苗圃AEFG的面積為y平方米.
(1)求y與x之間的函數(shù)關(guān)系式(不需寫自變量的取值范圍);
(2)根據(jù)改造方案,改造后的矩形苗圃AEFG的面積與原正方形苗圃ABCD的面積相等,請問此時BE的長為多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系內(nèi),△ABC的三個頂點坐標分別為A(1,4),B(1,1),C(3,1).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,求線段BC掃過的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△OAB中,頂點O(0,0),A(﹣2,3),B(2,3),將△OAB與正方形ABCD組成的圖形繞點O順時針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,則第2020次旋轉(zhuǎn)結(jié)束時,點D的坐標為( 。
A.(﹣2,7)B.(7,2)C.(2,﹣7)D.(﹣7,﹣2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y = ax2+ bx + c經(jīng)過A、B、C三點,已知點A(-3,0),B(0,3),C(1,0).
(1)求此拋物線的解析式;
(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PD⊥AB于點D.動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標;
(3)在直線x = -2上是否存在點M,使得∠MAC = 2∠MCA,若存在,求出M點坐標.若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系中,將邊長為4的菱形的邊固定在軸上,開始時,現(xiàn)把菱形向左推,使點落在軸正半軸上的點處,則下列說法中錯誤的是( )
A.點的坐標為B.
C.點移動的路徑長度為4個單位長度D.垂直平分
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線與直線交于點,且點的橫坐標為.
(1)請用的代數(shù)式表示;
(2)點在直線上,點的橫坐標為,點的坐標為.
①若拋物線過點,求該拋物線的解析式;
②若拋物線與線段恰有一個交點,直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com