【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點(diǎn)D,E是⊙O上一點(diǎn),且∠AED=45°.
(1)試判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若⊙O的半徑為3,sin∠ADE= ,求AE的值.

【答案】
(1)解:CD與圓O相切.

證明:連接OD,則∠AOD=2∠AED=2×45°=90°.

∵四邊形ABCD是平行四邊形,

∴AB∥DC.

∴∠CDO=∠AOD=90°.

∴OD⊥CD.

∴CD與圓O相切


(2)解:連接BE,則∠ADE=∠ABE.

∴sin∠ADE=sin∠ABE=

∵AB是圓O的直徑,

∴∠AEB=90°,AB=2×3=6.

在Rt△ABE中,sin∠ABE= =

∴AE=5.


【解析】(1)連接OD,則∠AOD=為直角,由四邊形ABCD是平行四邊形,則AB∥DC.從而得出∠CDO=90°,即可證出答案.(2)連接BE,則∠ADE=∠ABE根據(jù)題意得sin∠ABE= .由AB是圓O的直徑求出AB的長(zhǎng).再在Rt△ABE中,求得AE即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識(shí),掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分,以及對(duì)圓周角定理的理解,了解頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校需要招聘一名教師,對(duì)三名應(yīng)聘者進(jìn)行了三項(xiàng)素質(zhì)測(cè)試下面是三名應(yīng)聘者的綜合測(cè)試成績(jī):

應(yīng)聘者

成績(jī)

項(xiàng)目

A

B

C

基本素質(zhì)

70

65

75

專業(yè)知識(shí)

65

55

50

教學(xué)能力

80

85

85

(1)如果根據(jù)三項(xiàng)測(cè)試的平均成績(jī)確定錄用教師,那么誰將被錄用?

(2)學(xué)校根據(jù)需要,對(duì)基本素質(zhì)、專業(yè)知識(shí)、教學(xué)能力的要求不同,決定按2:1:3的比例確定其重要性,那么哪一位會(huì)被錄用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣2,﹣4),直線x=﹣2與x軸相交于點(diǎn)B,連接OA,拋物線y=﹣x2從點(diǎn)O沿OA方向平移,與直線x=﹣2交于點(diǎn)P,頂點(diǎn)M到點(diǎn)A時(shí)停止移動(dòng).

(1)線段OA所在直線的函數(shù)解析式是;
(2)設(shè)平移后拋物線的頂點(diǎn)M的橫坐標(biāo)為m,問:當(dāng)m為何值時(shí),線段PA最長(zhǎng)?并求出此時(shí)PA的長(zhǎng).
(3)若平移后拋物線交y軸于點(diǎn)Q,是否存在點(diǎn)Q使得△OMQ為等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1和∠2互為補(bǔ)角,∠A=D.求證:ABCD.

證明:∵∠1與∠CGD是對(duì)頂角,

∴∠1=CGD______.

又∠1和∠2互為補(bǔ)角(已知),

∴∠CGD和∠2互為補(bǔ)角,

AEFD_________,

∴∠A=BFD_______.

∵∠A=D(已知),

∴∠BFD=D_______

ABCD______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)k為常數(shù),k≠1).

)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;

)若在其圖象的每一支上,yx的增大而減小,求k的取值范圍;

)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)Ax1y1、Bx2,y2,當(dāng)y1y2時(shí),試比較x1x2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落到點(diǎn)C′處;作∠BPC′的角平分線交AB于點(diǎn)E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一根起點(diǎn)為1的數(shù)軸,現(xiàn)有同學(xué)將它彎折,彎折后虛線上第一行的數(shù)是1,第二行的數(shù)是13,第三行的數(shù)是43,…,依此規(guī)律,第五行的數(shù)是( )

A. 183 B. 157 C. 133 D. 91

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,填空:

(1)若∠4=∠3,則_________,理由是______

(2)若∠2=∠E,則_______,理由是____;

(3)若∠A=∠ABE=180°,則_______,理由是____;

(4)若∠2=∠____,則DA∥EB,理由是____;

(5)若∠DBC+∠_____=180°,則DB∥EC,理由是____;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市水果批發(fā)部門欲將A市的一批水果運(yùn)往本市銷售,有火車和汽車兩種運(yùn)輸方式,運(yùn)輸過程中的損耗均為200元/時(shí)。其它主要參考數(shù)據(jù)如下:

運(yùn)輸工具

途中平均速度(千米/時(shí))

運(yùn)費(fèi)(元/千米)

裝卸費(fèi)用(元)

火車

100

15

2000

汽車

80

20

900

(1)如果汽車的總支出費(fèi)用比火車費(fèi)用多1100元,你知道本市與A市之間的路程是多少千米嗎?請(qǐng)你列方程解答

(2)如果A市與某市之間的距離為S千米,且知道火車與汽車在路上耽誤的時(shí)間分別為2小時(shí)和3.1小時(shí),你若是某市水果批發(fā)部門的經(jīng)理,要將這種水果從A市運(yùn)往本市銷售。你將選擇哪種運(yùn)輸方式比較合算呢?

查看答案和解析>>

同步練習(xí)冊(cè)答案