已知:如圖,拋物線y=-
3
3
x2-
2
3
3
x+
3
的圖象與x軸分別交于A,B兩點,與y軸交精英家教網于C點,⊙M經過原點O及點A、C,點D是劣弧
OA
上一動點(D點與A、O不重合).
(1)求拋物線的頂點E的坐標;
(2)求⊙M的面積;
(3)連CD交AO于點F,延長CD至G,使FG=2,試探究,當點D運動到何處時,直線GA與⊙M相切,并請說明理由.
分析:(1)已知了拋物線的解析式,用配方法和公式法求都可以.
(2)由于∠AOC是直角,那么連接AC,則AC必過圓心M,也就是說AC就是圓M的直徑,因此求出AC就可以得出圓M的半徑長,根據(jù)拋物線的解析式可求出A,C兩點的坐標,也就知道了OA,OC的長,可在直角三角形AOC中,用勾股定理求出AC,然后可根據(jù)圓的面積的計算公式求出圓M的面積.
(3)應是D到OA中點時,GA與圓M相切,要證垂直就必須證AC⊥AG,此時D是弧OA的中點,根據(jù)OC,OA的長,不難得出∠ACO=60°,那么∠FCO=∠ACD=30°,有OC=
3
,那么可求得OF=1,AF=OA-OF=2,首先三角形AFG是個等腰三角形,而∠CFO=90-30=60°,因此∠AFG=60°,三角形AFG就是個等邊三角形,∠FAG=60°,因此∠CAG=60+30=90°,即可得出GA與圓M相切.
解答:精英家教網解:(1)拋物線y=-
3
3
x2-
2
3
3
x+
3

=-
3
3
(x2+2x+1)+
3
+
3
3

=-
3
3
(x+1)2+
4
3
3

∴E的坐標為(-1,
4
3
3
);

(2)連AC;
∵⊙M過A,O,C,∠AOC=90°,
∴AC為⊙O的直徑.
而|OA|=3,OC=
3

∴r=
AC
2
=
3

∴S⊙M=πr2=3π;

(3)當點D運動到
OA
的中點時,直線GA與⊙M相切.
理由:在Rt△ACO中,|OA|=3,OC=
3
,
∵tan∠ACO=
3
3
=
3

∴∠ACO=60°,∠CAO=30°.
∵點D是
OA
的中點,
AD
=
DO

∴∠ACG=∠DCO=30°.
∴OF=OC•tan30°=1,∠CFO=60°.
在△GAF中,AF=2,F(xiàn)G=2,∠AFG=∠CFO=60°,
∴△AGF為等邊三角形.
∴∠GAF=60°.
∴∠CAG=∠GAF+∠CAO=90°.
又AC為直徑,
∴當D為
OA
的中點時,GA為⊙M的切線.
點評:本題將拋物線與圓放在同一坐標系中研究,因此數(shù)形結合的解題思想是不可缺少的,解第3小問時可以先自己作圖來確定D點的位置.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點,它們的橫坐標分別為-1和3,精英家教網與y軸交點C的縱坐標為3,△ABC的外接圓的圓心為點M.
(1)求這條拋物線的解析式;
(2)求圖象經過M、A兩點的一次函數(shù)解析式;
(3)在(1)中的拋物線上是否存在點P,使過P、M兩點的直線與△ABC的兩邊AB、BC的交點E、F和點B所組成的△BEF和△ABC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經過A、B兩點的一個動圓,當⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標;
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•寧化縣質檢)已知:如圖,拋物線y=ax2+bx+c與x軸交于點A(1-
3
,0)和點B,將拋物線沿x軸向上翻折,頂點P落在點P′(1,3)處.
(1)求原拋物線的解析式;
(2)在原拋物線上,是否存在一點,與它關于原點對稱的點也在該拋物線上?若存在,求滿足條件的點的坐標;若不存在,說明理由.
(3)學校舉行班徽設計比賽,九年級(5)班的小明在解答此題時頓生靈感:過點P′作x軸的平行線交拋物線于C、D兩點,將翻折后得到的新圖象在直線CD以上的部分去掉,設計成一個“W”型的班徽,“5”的拼音開頭字母為W,“W”圖案似大鵬展翅,寓意深遠;而且小明通過計算驚奇的發(fā)現(xiàn)這個“W”圖案的高與寬(CD)的比非常接近黃金分割比
5
-1
2
(約等于0.618).請你計算這個“W”圖案的高與寬的比到底是多少?(參考數(shù)據(jù):
5
≈2.236
6
≈2.449
,結果精確到0.001)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A,B,點A的坐標為(4,0).
(1)求該拋物線的解析式;
(2)若點M在拋物線上,且△ABC與△ABM的面積相等,直接寫出點M的坐標;
(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;
(4)若平行于x軸的動直線l與線段AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出直線l的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知,如圖,拋物線y=x2+px+q與x軸相交于A、B兩點,與y軸交于點C,且OA≠OB,OA=OC,設拋物線的頂點為點P,直線PC與x軸的交點D恰好與點A關于y軸對稱.
(1)求p、q的值.
(2)在題中的拋物線上是否存在這樣的點Q,使得四邊形PAQD恰好為平行四邊形?若存在,求出點Q的坐標;若不存在,請說明理由.
(3)連接PA、AC.問:在直線PC上,是否存在這樣點E(不與點C重合),使得以P、A、E為頂點的三角形與△PAC相似?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案