已知∠ABC,點(diǎn)P在射線BA上,請(qǐng)根據(jù)“同位角相等,兩直線平行”,利用直尺和圓規(guī),過點(diǎn)P作直線PD平行于BC。(保留作圖痕跡,不寫作法。)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
某同學(xué)在一次課外活動(dòng)中,用硬紙片做了兩個(gè)直角三角形,見圖①、②.圖①中,;圖②中,.圖③是該同學(xué)所做的一個(gè)實(shí)驗(yàn):他將△的直角邊與△的斜邊重合在一起,并將△沿方向移動(dòng).在移動(dòng)過程中,兩點(diǎn)始終在邊上(移動(dòng)開始時(shí)點(diǎn)與點(diǎn)重合).
(1) 在△沿方向移動(dòng)的過程中,該同學(xué)發(fā)現(xiàn):兩點(diǎn)間的距離 ;連接的度數(shù) .(填“不變”、“ 逐漸變大”或“逐漸變小”)
(2) △在移動(dòng)過程中,與度數(shù)之和是否為定值,請(qǐng)加以說明;
(3) 能否將△移動(dòng)至某位置,使的連線與平行?如果能,請(qǐng)求出此時(shí)的度數(shù),如果不能,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
填寫推理理由(1×10=10分)
如圖,已知AB∥CD ,∠1=∠2,∠3=∠4,試說明AD∥BE
解:∵AB∥CD(已知)
∴∠4=∠_____( )
∵∠3=∠4(已知)
∴∠3=∠_____( )
∵∠1=∠2(已知)
∴∠ CAE+ =∠CAE+
即 ∠_____ =∠_____
∴∠3=∠_____
∴AD∥BE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
補(bǔ)全下列各題解題過程.(6分)
如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,∠C=∠D,求證DF∥AC.
證明:∵∠1=∠2(已知)
∠2=∠3 ∠1=∠4 ( )
∴∠3=∠4 ( 等量代換 )
∴_DB__∥_____ ( )
∴∠C=∠ABD ( )
∵∠C=∠D ( 已 知 )
∴∠D=∠ABD( )
∴DF∥AC( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知線段AB=8 cm,在直線AB上有一點(diǎn)C,且BC=4 cm,點(diǎn)M是線段AC的中點(diǎn), 求線段AM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com