【題目】已知x1、x2是方程x2﹣(k﹣2)x+k2+3k+5=0的兩個實數(shù)根,則x12+x22的最大值是( 。
A. 19 B. 18 C. 15 D. 13
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點A(x1,y1)、B(x2,y2),當y1>y2時,試比較x1與x2的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知OA=OB=4,∠AOB=60°,半⊙A的半徑為1,點C是半圓上任意一點,連結(jié)OC,把OC繞點O順時針旋轉(zhuǎn)6
0°到OD的位置,連結(jié)BD.
(1)如圖1,求證:AC=BD.
(2)如圖2,當OC與半圓相切于點C時,求CD的長.
(3)直接寫出△AOC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:在一次數(shù)學(xué)社團活動課上,同學(xué)們測量一座古塔CD的高度,他們首先在A處安置測量器,測得塔頂C的仰角∠CFE=30°,然后往塔的方向前進100米到達B處,此時測得塔頂C的仰角∠CGE=60°,已知測量器高1.5米,請你根據(jù)以上數(shù)據(jù)計算出古塔CD的高度.(保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(4,3),(3,0).
(1)求b、c的值;
(2)求出該二次函數(shù)圖象的頂點坐標和對稱軸,并在所給坐標系中畫出該函數(shù)的圖象;
(3)該函數(shù)的圖象經(jīng)過怎樣的平移得到y=x2的圖象?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點P從點A開始沿邊AB向終點B以每秒2個單位長度的速度移動,動點Q從點B開始沿邊BC以每秒4個單位長度的速度向終點C移動,如果點P、Q分別從點A、B同時出發(fā),那么△PBQ的面積S隨出發(fā)時間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD是正方形,點E是邊BC上一點,點F在射線CM上,∠AEF=90°,AE=EF,過點F作射線BC的垂線,垂足為H,連接AC.
(1)試判斷BE與FH的數(shù)量關(guān)系,并說明理由;
(2)求證:∠ACF=90°;
(3)連接AF,過A、E、F三點作圓,如圖2,若EC=4,∠CEF=15°,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車廠決定把一塊長100m、寬60m的矩形空地建成停車場.設(shè)計方案如圖所示,陰影區(qū)域為綠化區(qū)(四塊綠化區(qū)為全等的矩形),空白區(qū)域為停車位,且四周的4個出口寬度相同,其寬度不小于28m,不大于52m.設(shè)綠化區(qū)較長邊為xm,停車場的面積為ym2
(1)直接寫出:
①用x的式子表示出口的寬度為_____.
②y與x的函數(shù)關(guān)系式及x的取值范圍.
(2)求停車場的面積y的最大值.
(3)預(yù)計停車場造價為100元/m2,綠化區(qū)造價為50元/m2.如果汽車廠投資不得超過540000元建造,當x為整數(shù)時,共有幾種建造方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com