【題目】如圖,已知四邊形ABCD是矩形,cot∠ADB= ,AB=16.點(diǎn)E在射線BC上,點(diǎn)F在線段BD上,且∠DEF=∠ADB.
(1)求線段BD的長(zhǎng);
(2)設(shè)BE=x,△DEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出函數(shù)定義域;
(3)當(dāng)△DEF為等腰三角形時(shí),求線段BE的長(zhǎng).
【答案】
(1)
解:∵四邊形ABCD是矩形,
∴∠A=90°,
在Rt△BAD中, ,AB=16,
∴AD=12∴
(2)
解:∵AD∥BC,
∴∠ADB=∠DBC,
∵∠DEF=∠ADB,
∴∠DEF=∠DBC,
∵∠EDF=∠BDE,
∴△EDF∽△BDE,
∴ ,
∵BC=AD=12,BE=x,
∴CE=|x﹣12|,
∵CD=AB=16
∴在Rt△CDE中, ,
∵ ,
∴ ,
∴ ,定義域?yàn)?<x≤24
(3)
解:∵△EDF∽△BDE,
∴當(dāng)△DEF是等腰三角形時(shí),△BDE也是等腰三角形,
①當(dāng)BE=BD時(shí)
∵BD=20,∴BE=20
②當(dāng)DE=DB時(shí),
∵DC⊥BE,∴BC=CE=12,
∴BE=24;
③ 當(dāng)EB=ED時(shí),
作EH⊥BD于H,則BH= ,cos∠HBE=cos∠ADB,
即
∴ ,
解得:BE= ;
綜上所述,當(dāng)△DEF時(shí)等腰三角形時(shí),線段BE的長(zhǎng)為20或24或
【解析】(1)由矩形的性質(zhì)和三角函數(shù)定義求出AD,由勾股定理求出BD即可;(2)證明△EDF∽△BDE,得出 ,求出CE=|x﹣12|,由勾股定理求出DE,即可得出結(jié)果;(3)當(dāng)△DEF是等腰三角形時(shí),△BDE也是等腰三角形,分情況討論:①當(dāng)BE=BD時(shí);②當(dāng)DE=DB時(shí);③當(dāng)EB=ED時(shí);分別求出BE即可.
【考點(diǎn)精析】掌握平行四邊形的性質(zhì)是解答本題的根本,需要知道平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,過(guò)點(diǎn)B的直線MN∥AC,D為BC邊上一點(diǎn),連接AD,作DE⊥AD交MN于點(diǎn)E,連接AE.
(1)如圖①,當(dāng)∠ABC=45°時(shí),求證:AD=DE;
(2)如圖②,當(dāng)∠ABC=30°時(shí),線段AD與DE有何數(shù)量關(guān)系?并請(qǐng)說(shuō)明理由;
(3)當(dāng)∠ABC=α?xí)r,請(qǐng)直接寫(xiě)出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+| x+1|的最小值為2. (Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若a>0,求不等式f(x)≤4的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解下列方程或不等式組
(1)用配方法解方程:x2﹣x=3x+5
(2)解不等式組: ,并判斷﹣1, 這兩個(gè)數(shù)是否為該不等式組的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AB=9,cosB= ,把△ABC繞著點(diǎn)C旋轉(zhuǎn),使點(diǎn)B與AB邊上的點(diǎn)D重合,點(diǎn)A落在點(diǎn)E,則點(diǎn)A,E之間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y= 的圖象與正比例函數(shù)y=kx(k≠0)的圖象相交于橫坐標(biāo)為2的點(diǎn)A,平移直線OA,使它經(jīng)過(guò)點(diǎn)B(3,0),與y軸交于點(diǎn)C.
(1)求平移后直線的表達(dá)式;
(2)求∠OBC的余切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角三角形ABC中,∠ACB=90°,AB=10,sinB= ,點(diǎn)O是AB的中點(diǎn),∠DOE=∠A,當(dāng)∠DOE以點(diǎn)O為旋轉(zhuǎn)中心旋轉(zhuǎn)時(shí),OD交AC的延長(zhǎng)線于點(diǎn)D,交邊CB于點(diǎn)M,OE交線段BM于點(diǎn)N.
(1)當(dāng)CM=2時(shí),求線段CD的長(zhǎng);
(2)設(shè)CM=x,BN=y,試求y與x之間的函數(shù)解析式,并寫(xiě)出定義域;
(3)如果△OMN是以O(shè)M為腰的等腰三角形,請(qǐng)直接寫(xiě)出線段CM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將筆記本電腦放置在水平桌面上,顯示屏OB與底板OA夾角為115°(如圖1),側(cè)面示意圖為圖2;使用時(shí)為了散熱,在底板下面墊入散熱架O′AC后,電腦轉(zhuǎn)到AO′B′的位置(如圖3),側(cè)面示意圖為圖4,已知OA=0B=20cm,B′O′⊥OA,垂足為C.
(1)求點(diǎn)O′的高度O′C;(精確到0.1cm)
(2)顯示屏的頂部B′比原來(lái)升高了多少?(精確到0.1cm)
(3)如圖4,要使顯示屏O′B′與原來(lái)的位置OB平行,顯示屏O′B′應(yīng)繞點(diǎn)O′按順時(shí)針?lè)较蛐D(zhuǎn)多少度? 參考數(shù)據(jù):(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校學(xué)生會(huì)發(fā)現(xiàn)同學(xué)們就餐時(shí)剩余飯菜較多,浪費(fèi)嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤(pán)行動(dòng)”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動(dòng)的重要性,校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)就餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖.
(1)這次被調(diào)查的同學(xué)共有名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)計(jì)算在扇形統(tǒng)計(jì)圖中剩大量飯菜所對(duì)應(yīng)扇形圓心角的度數(shù);
(4)校學(xué)生會(huì)通過(guò)數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供200人用一餐.據(jù)此估算,該校20000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com