【題目】如圖,在平面直角坐標系中,將直角三角形的直角頂點放在點P4,4)處,兩直角邊分別與坐標軸交于點A和點B,則OA+OB的值為________.

【答案】8

【解析】

P點作PMx軸于M點,PNy軸于N點,先證明出△PBN≌△PAM,然后得到BN=AM,進而可以得到OA+OB=OM+AM+OB=OM+OB+BN=OM+ON=8.

如圖,過P點作PMx軸于M點,PNy軸于N點,

則∠PNB=PMA=90°,∠NPM=90°,

∵∠BPA=90°

∴∠NPB=MPA=90°-BPM,

P4,4

PM=PN=OM=ON=4

在△PBN和△PAM中,

NPB=MPA,PN=PM,∠PNB=PMA

∴△PBN≌△PAM.

PB=PA,BN=AM

OA+OB=OM+AM+OB=OM+BN+ON=OM+ON=4+4=8.

故填8.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,根據(jù)要求回答下列問題:

(1)點A關于y軸對稱點A′的坐標是  ;點B關于y軸對稱點B′的坐標是  

(2)作出ABC關于y軸對稱的圖形A′B′C′(不要求寫作法)

(3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):

次數(shù)

1

2

3

4

5

6

7

8

9

10

黑棋數(shù)

1

3

0

2

3

4

2

1

1

3

根據(jù)以上數(shù)據(jù),估算袋中的白棋子數(shù)量為( )

A. 60 B. 50 C. 40 D. 30

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,AB=AC,AD為中線,點PAD上一點,點QAC上一點,且∠BPQ+BAQ=180°.

1)若∠ABP=α,求∠PQC的度數(shù)(用含α的式子表示);

2)求證:BP=PQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD平分∠BAC,DE⊥AB于點E,DF⊥AC于點F,且BD=CD.

(1)圖中與△BDE全等的三角形是 ,請加以證明;

(2)若AE=6 cm,AC=4 cm,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形ABCD中,AB=8,AD=6;點E是對角線BD上一動點,連接CE,作EFCEAB邊于點F,以CEEF為鄰邊作矩形CEFG,作其對角線相交于點H.

(1)①如圖2,當點F與點B重合時,CE=  ,CG=  

②如圖3,當點EBD中點時,CE=  ,CG=  ;

(2)在圖1,連接BG,當矩形CEFG隨著點E的運動而變化時,猜想△EBG的形狀?并加以證明;

(3)在圖1,的值是否會發(fā)生改變?若不變,求出它的值;若改變,說明理由;

(4)在圖1,設DE的長為x,矩形CEFG的面積為S,試求S關于x的函數(shù)關系式,并直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列材料,然后回答問題:

在關于x的一元二次方程ax2+bx+c=0(a≠0)中,若各項的系數(shù)之和為零,即a+b+c=0,則有一根為1,另一根為.

證明:設方程的兩根為x1,x2,由a+b+c=0,知b=-(a+c),

∵x=,

∴x1=1,x2.

(1)若一元二次方程ax2+bx+c=0(a≠0)的各項系數(shù)滿足a-b+c=0,請直接寫出此方程的兩根;

(2)已知方程(ac-bc)x2+(bc-ab)x+(ab-ac)=0有兩個相等的實數(shù)根,運用上述結論證明:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AP=DP,DE=DF,DEAB于E,DFAC于F,則下列結論:.AD平分BAC;.BED≌△FPD;.DPAB;.DF是PC的垂直平分線.其中正確的是= _________ .(寫序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某消防隊在一居民樓前進行演習,消防員利用云梯成功救出點B處的求救者后,又發(fā)現(xiàn)點B正上方點C處還有一名求救者.在消防車上點A處測得點B和點C的仰角分別是45°65°,點A距地面2.5米,點B距地面10.5.為救出點C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)

查看答案和解析>>

同步練習冊答案