【題目】如圖,點(diǎn)B,F,C,E在直線lF,C之間不能直接測量,點(diǎn)A,Dl異側(cè),測得AB=DE,AC=DF,BF=EC.

1求證:ABC≌△DEF

2指出圖中所有平行的線段,并說明理由.

【答案】1詳見解析;2ABC=DEF,ACB=DFE,理由見解析.

【解析】

試題分析:1理用SSS即可判定ABC≌△DEF;2ABDE,ACDF,由全等三角形的性質(zhì)可得ABC=DEF,ACB=DFE,根據(jù)平行線的性質(zhì)即可得結(jié)論.

試題解析:1證明:BF=EC,

BF+CF=CF+CE,

BC=EF

AB=DE,AC=DF

∴△ABC≌△DEFSSS

2ABDE,ACDF,理由如下,

∵△ABC≌△DEF,

∴∠ABC=DEF,ACB=DFE,

ABDE,ACDF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=,點(diǎn)D為AB的中點(diǎn),以點(diǎn)D為圓心作圓心角為90°的扇形DEF,點(diǎn)C恰好在弧EF上,則圖中陰影部分的面積為________(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要想使一個六邊形活動支架ABCDEF穩(wěn)固且不變形,至少需要增加_____根木條才能固定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD中,E為對角線BD上一點(diǎn),過E點(diǎn)作EF⊥BD交BC于F,連接DF,G為DF中點(diǎn),連接EG,CG.

(1)求證:EG=CG;
(2)將圖①中△BEF繞B點(diǎn)逆時針旋轉(zhuǎn)45°,如圖②所示,取DF中點(diǎn)G,連接EG,CG.問(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)將圖①中△BEF繞B點(diǎn)旋轉(zhuǎn)任意角度,如圖③所示,再連接相應(yīng)的線段,問(1)中的結(jié)論是否仍然成立?通過觀察你還能得出什么結(jié)論(均不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 與直線:交于點(diǎn),點(diǎn)的橫坐標(biāo)為,直線軸的交點(diǎn)為,將直線向上平移后得到直線,直線剛好經(jīng)過拋物線與軸正半軸的交點(diǎn)和與軸的交點(diǎn)

(1)直接寫出點(diǎn)和點(diǎn)的坐標(biāo),并求出點(diǎn)的坐標(biāo);

(2)若點(diǎn)是拋物線第一象限內(nèi)的一個動點(diǎn),連接,交直線于點(diǎn),連接.設(shè)的面積為,當(dāng)取得最大值時,求出此時點(diǎn)的坐標(biāo)及的最大值;

(3)如圖,動點(diǎn)以每秒個單位長度的速度從點(diǎn)出發(fā),沿射線運(yùn)動;同時,動點(diǎn)以每秒個單位長度的速度從點(diǎn)出發(fā),沿射線運(yùn)動,設(shè)運(yùn)動時間為).過點(diǎn)作軸,交拋物線于點(diǎn),當(dāng)點(diǎn)、、所組成的三角形是直角三角形時,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算中正確的是( )

A、2x+3y =5xy B、x·x4=x4 C、x8÷x2=x4 D、(x2y)3=x6y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若等腰三角形的周長為10cm,其中一邊長為2cm,則該等腰三角形的底邊長為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a2+3a=1,則代數(shù)式2a2+6a﹣1的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,有一塊三角形余料ABC,它的邊BC=60mm,高AD=40mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點(diǎn)分別在AB,AC上.問加工成的正方形零件的邊長是多少mm?請你計算。

變式(1)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖2,此時,這個矩形零件的兩條邊長又分別為多少mm?請你計算.

變式(2)如果原題中所要加工的零件只是一個矩形,如圖3,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達(dá)到這個最大值時矩形零件的兩條邊長.

查看答案和解析>>

同步練習(xí)冊答案