【題目】在△ABC中,∠A=50°,點D,E分別是邊AC,AB上的點(不與A,B,C重合),點P是平面內一動點(P與D,E不在同一直線上),設∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若點P在邊BC上運動(不與點B和點C重合),如圖(1)所示,則∠1+∠2=________

(用α的代數(shù)式表示).

(2)若點PABC的外部,如圖(2)所示,則∠α,∠1,∠2之間有何關系?寫出你的結論,并說明理由.

(3)當點P在邊CB的延長線上運動時,試畫出相應圖形,標注有關字母與數(shù)字,并寫出對應的∠α,∠1,∠2之間的關系式.(不需要證明)

【答案】(1)∠1+∠2=50°+∠α;

(2)∠2﹣∠1=∠α﹣50°;

(3) ①∠2﹣∠1=∠α﹣50°;②∠1﹣∠2=50°+∠α

【解析】(1)∵∠AEP=180°﹣∠2,∠ADP=180°﹣∠1,

∴180°﹣∠2+180°﹣∠1+∠α+50°=360°,

即∠1+∠2=50°+∠α;

(2)根據(jù)三角形外角的性質可知,

∠2﹣∠α=∠1﹣50°,

則∠2﹣∠1=∠α﹣50°;

(3)如圖, ①∠2﹣∠α=∠1﹣50°,則∠2﹣∠1=∠α﹣50°;

如圖,②∠1=50°+∠α+∠2,∠1﹣∠2=50°+∠α.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AD是中線,∠BAD=B+C,tanABC=,則tanBAD=________

【答案】

【解析】延長ADE,使AD=DE,CF ,

,

, ,所以,

是等腰三角形,s

EM= x,DE=11,MC=10,

,

,

x=,

tanBAD=.

故答案為.

點睛:倍長中線法構造全等三角形,如圖,AD是中線,令AD=DE,ADC全等EBD.

型】填空
束】
21

【題目】先化簡,再求值: ÷-a+2),其中a=2sin60°+3tan45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=ax2+bx與y=bx+a的圖像可能是(  。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,點A的坐標為(a,a),點B的坐標(b,c),且a、bc滿足.

(1)a沒有平方根,判斷點A在第幾象限并說明理由.

(2)ABOA、OB,若OAB的面積大于5而小于8,求a的取值范圍;

(3)若兩個動點M2m,3m-5),N(n-1,-2n-3),請你探索是否存在以兩個動點M、N為端點的線段MNAB,且MN=AB.若存在,求出MN兩點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,點為對角線的中點,過點于點,交于點,連接,

(1)求證:四邊形是菱形;

(2)連接,若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,點MCD中點,將△MBC沿BM翻折至△MBE,若∠AME α,∠ABE β,則 α β 之間的數(shù)量關系為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca0)的圖象與x軸交于AB兩點,與y軸交于點C,且OA=OC,則下列結論:①abc0;;acb+1=0;OAOB=.其中正確結論的序號是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當點D在線段BC上時,

①BC與CF的位置關系為:   

②BC,CD,CF之間的數(shù)量關系為:   ;(將結論直接寫在橫線上)

(2)數(shù)學思考

如圖2,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.

(3)拓展延伸

如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請求出GE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,后求值

1(2a-3b)(3b2a)-a-2b2,其中:a=-2,b=3;

2)[(xy+2(xy-2)-2x2y2+4÷(xy),其中x=10,y=-.

查看答案和解析>>

同步練習冊答案