已知,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),以AD為邊作正方形ADEF,連接CF.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),求證:①CF=BD;②CF⊥BD.
(2)如圖2,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),其它條件不變,線段CF與BD的上述關(guān)系是否還成立?請(qǐng)直接寫出結(jié)論即可(不必證明).
(3)如圖3,當(dāng)點(diǎn)D在線段BC的反向延長(zhǎng)線上,且點(diǎn)A、F在直線BC的兩側(cè),其它條件不變,線段CF與BD的上述關(guān)系是否還成立?若成立,請(qǐng)證明你的結(jié)論;若不成立,請(qǐng)說明理由.
分析:(1)根據(jù)等腰直角三角形的性質(zhì)求出∠ABC=∠ACB=45°,正方形的性質(zhì)可得AD=AF,∠DAF=90°,然后利用同角的余角相等求出∠BAD=∠CAF,再利用“邊角邊”證明△ABD和△ACF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CF=BD,全等三角形對(duì)應(yīng)角相等可得∠ACF=∠ABD,然后求出∠BCF=90°,再根據(jù)垂直的定義證明即可;
(2)結(jié)論仍然成立;
(3)同(1)可證△ABD和△ACF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CF=BD,全等三角形對(duì)應(yīng)角相等可得∠ACF=∠ABD=135°,然后求出∠BCF=90°,再根據(jù)垂直的定義證明即可.
解答:(1)證明:∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD+∠CAD=∠BAC=90°,
∠CAF+∠CAD=∠DAF=90°,
∴∠BAD=∠CAF,
在△ABD和△ACF中,
AB=AC
∠BAD=∠CAF
AD=AF

∴△ABD≌△ACF(SAS),
∴①CF=BD,
∠ACF=∠ABD,
∴∠BCF=∠ACB+∠ACF=45°+45°=90°,
∴②CF⊥BD;

(2)解:當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),線段CF與BD的上述關(guān)系仍然成立;

(3)解:當(dāng)點(diǎn)D在線段BC的反向延長(zhǎng)線上,且點(diǎn)A、F在直線BC的兩側(cè),線段CF與BD的上述關(guān)系仍然成立.
理由如下:同理可證△ABD≌△ACF,
∴CF=BD,∠ACF=∠ABD=180°-45°=135°,
∵∠ACB=45°,
∴∠BCF=∠ACF-∠ACB=135°-45°=90°,
∴CF⊥BD.
點(diǎn)評(píng):本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),根據(jù)點(diǎn)D的位置的變化,△ABD和△ACF始終全等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、已知:在△ABC中AB=AC,點(diǎn)D在CB的延長(zhǎng)線上.
求證:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)化簡(jiǎn):(a-
1
a
)÷
a2-2a+1
a
;
(2)已知:在△ABC中,AB=AC.
①設(shè)△ABC的周長(zhǎng)為7,BC=y,AB=x(2≤x≤3).寫出y關(guān)于x的函數(shù)關(guān)系式;
②如圖,點(diǎn)D是線段BC上一點(diǎn),連接AD,若∠B=∠BAD,求證:△BAC∽△BDA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,已知,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)M,ME∥AB交BC于點(diǎn)E,MF∥AC交BC于點(diǎn)F.求證:△MEF的周長(zhǎng)等于BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、已知,在△ABC中,AB=AC=x,BC=6,則腰長(zhǎng)x的取值范圍是
x>3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足為點(diǎn)E.∠B=38°,∠C=70°.
①求∠DAE的度數(shù);
②試寫出∠DAE與∠B、∠C之間的一般等量關(guān)系式(只寫結(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案