【題目】已知:如圖,△ABC和△DBE均為等腰直角三角形.
(1)求證:AD=CE;
(2)求證:AD和CE垂直.

【答案】
(1)證明:∵△ABC和△DBE是等腰直角三角形,

∴AB=BC,BD=BE,∠ABC=∠DBE=90°,

∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,

即∠ABD=CBE,

在△ABD和△CBE中,

,

∴△ABD≌△CBE(SAS),

∴AD=CE


(2)證明:延長AD分別交BC和CE于G和F,如圖所示:

∵△ABD≌△CBE,

∴∠BAD=∠BCE,

∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,

又∵∠BGA=∠CGF,

∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,

∴∠AFC=∠ABC=90°,

∴AD⊥CE.


【解析】(1)由等腰直角三角形的性質(zhì)得出AB=BC,BD=BE,∠ABC=∠DBE=90°,得出∠ABD=CBE,證出△ABD≌△CBE(SAS),得出AD=CE;(2)△ABD≌△CBE得出∠BAD=∠BCE,再由∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,得出∠AFC=∠ABC=90°,證出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點(diǎn)A(﹣1,0),B(0,),C(2,0),其對稱軸與x軸交于點(diǎn)D

(1)求二次函數(shù)的表達(dá)式及其頂點(diǎn)坐標(biāo);

(2)若P為y軸上的一個動點(diǎn),連接PD,則PB+PD的最小值為 ;

(3)M(x,t)為拋物線對稱軸上一動點(diǎn)

①若平面內(nèi)存在點(diǎn)N,使得以A,B,M,N為頂點(diǎn)的四邊形為菱形,則這樣的點(diǎn)N共有 個;

②連接MA,MB,若AMB不小于60°,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,BAC=120°,AB=AC=6.P是底邊BC上的一個動點(diǎn)(P與B、C不重合),以P為圓心,PB為半徑的P與射線BA交于點(diǎn)D,射線PD交射線CA于點(diǎn)E.

(1)若點(diǎn)E在線段CA的延長線上,設(shè)BP=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

(2)當(dāng)BP=時(shí),試說明射線CA與P是否相切.

(3)連接PA,若S△APE=S△ABC,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.

(1)若直線y=mx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;

(2)在拋物線的對稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);

(3)設(shè)點(diǎn)P為拋物線的對稱軸x=﹣1上的一個動點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于點(diǎn)O,射線OM平分∠AOC,ON⊥OM,若∠AOM=35°,則∠CON的度數(shù)為( 。
A.35°
B.45°
C.55°
D.65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩個相似多邊形面積比為4:9,則它們的周長比是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:2a2+4a=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解七年級同學(xué)每天的睡眠時(shí)間,在七年級的10個班中,每班抽5名學(xué)生做調(diào)查,這一調(diào)查中,總體是指_____,樣本是指_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),分別作勻速運(yùn)動,其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動,速度為每秒1個單位;點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動,當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動.設(shè)P從出發(fā)起運(yùn)動了t秒.

(1)如果點(diǎn)Q的速度為每秒2個單位,①試分別寫出這時(shí)點(diǎn)Q在OC上或在CB上時(shí)的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);

②求t為何值時(shí),PQ∥OC?

(2)如果點(diǎn)P與點(diǎn)Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,①試用含t的代數(shù)式表示這時(shí)點(diǎn)Q所經(jīng)過的路程和它的速度;

②試問:這時(shí)直線PQ是否可能同時(shí)把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案