【題目】如圖,在的正方形方格中,每個小正方形的邊長都是1,頂點都在網格線的交點處的三角形,是一個格點三角形.
(1)在圖1中,請判斷與是否相似,并說明理由;
(2)在圖2,中,以O為位似中心,再畫一個格點三角形,使他與的位似比為;
(3)在圖3中,請畫出所有滿足條件的格點三角形,它與相似,且有一條公共邊和一個公共角.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的網格圖中有格點△ABC(注:頂點在網格線交點處的三角形叫做格點三角形).只用沒有刻度的直尺,按如下要求畫圖,
(1)以點C為位似中心,在如圖中作△DEC∽ABC,且相似比為1:2;
(2)若點B為原點,點C(4,0),請在如圖中畫出平面直角坐標系,作出△ABC的外心,并直接寫出△ABC的外心的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】記某商品銷售單價為x元,商家銷售此種商品每月獲得的銷售利潤為y元,且y是關于x的二次函數(shù).已知當商家將此種商品銷售單價分別定為55元或75元時,他每月均可獲得銷售利潤1800元;當商家將此種商品銷售單價定為80元時,他每月可獲得銷售利潤1550元,則y與x的函數(shù)關系式是( )
A.y=﹣(x﹣60)2+1825B.y=﹣2(x﹣60)2+1850
C.y=﹣(x﹣65)2+1900D.y=﹣2(x﹣65)2+2000
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①表示一個時鐘的鐘面垂直固定于水平桌面上,其中分針上有一點A,當鐘面顯示3點30分時,分針垂直于桌面,A點距桌面的高度為10cm.圖②表示當鐘面顯示3點45分時,A點距桌面的高度為16cm,若鐘面顯示3點55分時,A點距桌面的高度為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,,,點D在邊AB上,且,動點P從點A出發(fā),以每秒1個單位長度的速度向終點B運動,以PD為邊向上做正方形,設點P運動的時間為秒,正方形與重疊部分的面積為.
(1)用含有的代數(shù)式表示線段的長.
(2)當點落在的邊上時,求的值.
(3)求與的函數(shù)關系式.
(4)當點P在線段AD上運動時,做點N關于CD的對稱點,當與的某一個頂點的連線平分的面積時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,函數(shù)y(x>0)的圖象與直線y=2x+1交于點A(1,m)
(1)求k,m的值;
(2)已知點P(0,n)(n>0),過點P作平行于x軸的直線,交直線y=2x+1于點B,交函數(shù)y(x>0)的圖象于點C.橫、縱坐標都是整數(shù)的點叫做整點.
①當n=1時,寫出線段BC上的整點的坐標;
②若y(x>0)的圖象在點A,C之間的部分與線段AB,BC所圍成的區(qū)域內(包括邊界)恰有6個整點,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy,對于點P(xp,yp)和圖形G,設Q(xQ,yQ)是圖形G上任意一點,|xp﹣xQ|的最小值叫點P和圖形G的“水平距離”,|yp﹣yQ|的最小值叫點P和圖形G的“豎直距離”,點P和圖形G的“水平距離”與“豎直距離”的最大值叫做點P和圖形G的“絕對距離”
例如:點P(﹣2,3)和半徑為1的⊙O,因為⊙O上任一點Q(xQ,yQ)滿足﹣1≤xQ≤1,﹣1≤yQ≤1,點P和⊙O的“水平距離”為|﹣2﹣xQ|的最小值,即|﹣2﹣(﹣1)|=1,點P和⊙O的“豎直距離”為|3﹣yQ|的最小值即|3﹣1|=2,因為2>1,所以點P和⊙O的“絕對距離”為2.
已知⊙O半徑為1,A(2,),B(4,1),C(4,3)
(1)①直接寫出點A和⊙O的“絕對距離”
②已知D是△ABC邊上一個動點,當點D與⊙O的“絕對距離”為2時,寫出一個滿足條件的點D的坐標;
(2)已知E是△ABC邊一個動點,直接寫出點E與⊙O的“絕對距離”的最小值及相應的點E的坐標
(3)已知P是⊙O上一個動點,△ABC沿直線AB平移過程中,直接寫出點P與△ABC的“絕對距離”的最小值及相應的點P和點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+(4a﹣1)x﹣4與x軸交于點A、B,與y軸交于點C,且OC=2OB,點D為線段OB上一動點(不與點B重合),過點D作矩形DEFH,點H、F在拋物線上,點E在x軸上.
(1)求拋物線的解析式;
(2)當矩形DEFH的周長最大時,求矩形DEFH的面積;
(3)在(2)的條件下,矩形DEFH不動,將拋物線沿著x軸向左平移m個單位,拋物線與矩形DEFH的邊交于點M、N,連接M、N.若MN恰好平分矩形DEFH的面積,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.以AB上某一點O為圓心作⊙O,使⊙O經過點A和點D.
(1)判斷直線BC與⊙O的位置關系,并說明理由;
(2)若AC=3,∠B=30°.
①求⊙O的半徑;
②設⊙O與AB邊的另一個交點為E,求線段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.(結果保留根號和π)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com