【題目】如圖,在ABC中,AB=AC,DE分別在邊AB、AC上,DE∥BC

1)試問△ADE是否是等腰三角形,并說明理由.

2)若MDE上的點,且BM平分CM平分,若的周長為20BC=8.的周長.

【答案】(1) 是等腰三角形,理由詳見解析;(2)28.

【解析】試題分析:(1)由DEBC,可知ADE∽△ABC,根據(jù)相似三角形性質即可求得結論;.

2)由于DEBCBM平分∠ABC,CM平分∠ACB,易證BD=DM,ME=CE,根據(jù)ADE的周長為20,BC=8,即可求出ABC的周長.

試題解析:(1DEBC,.

∴△ADE∽△ABC.

.

AB=AC.

AD=AE.

∴△ADE是等腰三角形..

2DEBC,BM平分∠ABCCM平分∠ACB,.

∴∠MBC=DMB=DBM,MCB=MCE=EMC.

BD=DM,ME=CE.

∵△ADE的周長=AD+AE+DM+ME=20,.

AD+AE+BD+CE=20.

∴△ABC的周長=AD+AE+BD+CE+BC=20+8=28

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)若a是(-4)2的平方根,b的一個平方根是2,求式子ab的立方根;

(2)實數(shù)a,b互為相反數(shù),c,d互為倒數(shù),x的絕對值為,求式子x2+(abcd)x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角尺如圖擺放(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)點DAB的中點,DEAC于點PDF經過點C

1)求∠ADE的度數(shù);

2)如圖,將△DEF繞點D順時針方向旋轉角α0°<α<60°),此時的等腰直角三角尺記為△DE′F′,DE′AC于點M,DF′BC于點N,試判斷的值是否隨著α的變化而變化?如果不變,請求出的值;反之,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填寫下面證明過程中的推理依據(jù):

已知AD⊥BC,F(xiàn)G⊥BC,垂足分別為D、G,且∠1=∠2,求證∠BDE=∠C.

證明:∵AD⊥BC,F(xiàn)G⊥BC (已知),

∴∠ADC=∠FGC=90°____________

∴AD∥FG______________________

∴∠1=∠3___________________

又∵∠1=∠2,(已知),

∴∠3=∠2____________

∴ED∥AC_____________

∴∠BDE=∠C______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工藝品廠生產一種汽車裝飾品,每件生產成本為20元,銷售價格在30元至80元之間(含30元和80元),銷售過程中的管理、倉儲、運輸?shù)雀鞣N費用(不含生產成本)總計50萬元,其銷售量y(萬個)與銷售價格(元/個)的函數(shù)關系如圖所示.

(1)當30x60時,求y與x的函數(shù)關系式;

(2)求出該廠生產銷售這種產品的純利潤w(萬元)與銷售價格x(元/個)的函數(shù)關系式;

(3)銷售價格應定為多少元時,獲得利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點P(1,4),Q(m,n)在函數(shù)y= (x>0)的圖象上,當m>1時,過點P分別作x軸、y軸的垂線,垂足為點A,B;過點Q分別作x軸、y軸的垂線,垂足為點C,D.QD交PA于點E,隨著m的增大,四邊形ACQE的面積(  )

A. 減小 B. 增大 C. 先減小后增大 D. 先增大后減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形OABC的頂點O與坐標原點重合,點C的坐標為(0,3),點A在x軸的負半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點D和M,反比例函數(shù)y=的圖象經過點D,與BC的交點為N.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,將ABC沿DE折疊,使頂點C落在ABC三邊的垂直平分線的交點O處,若BE=BO,則∠BOE=____________度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列材料:

我們已經學過將一個多項式分解因式的方法有提公因式法和運用公式法,其實分解因式的方法還有分組分解法、拆項法、十字相乘法等等.

(1)分組分解法:將一個多項式適當分組后,可提公因式或運用公式繼續(xù)分解的方法.

如:ax+by+bx+ay=ax+bx+ay+by

=xa+b+ya+b

=a+b)(x+y

2xy+y2﹣1+x2

=x2+2xy+y2﹣1

=x+y2﹣1

=x+y+1)(x+y﹣1

2拆項法:將一個多項式的某一項拆成兩項后,可提公因式或運用公式繼續(xù)分解的方法.如:

x2+2x﹣3

=x2+2x+1﹣4

=x+12﹣22

=x+1+2)(x+1﹣2

=x+3)(x﹣1

請你仿照以上方法,探索并解決下列問題:

(1)分解因式:

(2)分解因式:x2﹣6x﹣7;

(3)分解因式:

查看答案和解析>>

同步練習冊答案