(2013•益陽)如圖,益陽市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張在小道上測得如下數(shù)據(jù):AB=80.0米,∠PAB=38.5°,∠PBA=26.5.請幫助小張求出小橋PD的長并確定小橋在小道上的位置.(以A,B為參照點,結果精確到0.1米)
(參考數(shù)據(jù):sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)
分析:設PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的長度,繼而也可確定小橋在小道上的位置.
解答:解:設PD=x米,
∵PD⊥AB,
∴∠ADP=∠BDP=90°,
在Rt△PAD中,tan∠PAD=
x
AD
,
∴AD=
x
tan38.5°
x
0.80
=
5
4
x,
在Rt△PBD中,tan∠PBD=
x
DB
,
∴DB=
x
tan26.5°
x
0.50
=2x,
又∵AB=80.0米,
5
4
x+2x=80.0,
解得:x≈24.6,即PD≈24.6米,
∴DB=2x=49.2.
答:小橋PD的長度約為24.6米,位于AB之間距B點約49.2米.
點評:本題考查了解直角三角形的應用,解答本題的關鍵是構造直角三角形,利用三角函數(shù)表示出相關線段的長度,難度一般.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•益陽)如圖,在平行四邊形ABCD中,下列結論中錯誤的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•益陽)如圖,若AB是⊙O的直徑,AB=10cm,∠CAB=30°,則BC=
5
5
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•益陽)如圖,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求證:△ABD∽△CBE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•益陽)如圖1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分線BE交AC于E.
(1)求證:AE=BC;
(2)如圖(2),過點E作EF∥BC交AB于F,將△AEF繞點A逆時針旋轉角α(0°<α<144°)得到△AE′F′,連結CE′,BF′,求證:CE′=BF′;
(3)在(2)的旋轉過程中是否存在CE′∥AB?若存在,求出相應的旋轉角α;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案