分解因式:
(1)16x2-64;
(2)(x2+y22-4x2y2;
(3)x2(a-b)2-y2(b-a)2
(4)4x(y-x)-y2;
(5)16x4-72x2y2+81y4;
(6)(x2+4x)2+8(x2+4x)+16.
分析:(1)原式提取公因式后,利用平方差公式分解即可得到結果;
(2)原式利用平方差公式分解,再利用完全平方公式變形即可得到結果;
(3)原式變形后,提取公因式,并利用平方差公式分解即可;
(4)原式去括號后,提取-1變形,利用完全平方公式分解即可;
(5)原式利用完全平方公式分解即可;
(6)原式利用完全平方公式分解即可.
解答:解:(1)16x2-64=16(x+2)(x-2);
(2)(x2+y22-4x2y2=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2
(3)x2(a-b)2-y2(b-a)2=x2(a-b)2-y2(a-b)2=(a-b)2(x+y)(x-y);
(4)4x(y-x)-y2=-(4x2-4xy+y2)=-(2x-y)2
(5)16x4-72x2y2+81y4=(4x2-9y22=(2x+3y)2(2x-3y)2;
(6)(x2+4x)2+8(x2+4x)+16=(x2+4x+4)2=(x+2)4
點評:此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

18、分解因式:
①-3x3+12x2-12x                    ②16(a-b)2-(a+b)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、分解因式
(1)a4-16
(2)n3-2n2+n.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、把下列多項式分解因式
①x3-4x
②x4-8x2+16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

分解因式
(1)a4-16;
(2)x2-2xy+y2-9;
(3)6xyz-3xz2
(4)10b(x-y)2-5a(y-x)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

分解因式:x4-x2+8x-16.

查看答案和解析>>

同步練習冊答案