【題目】已知四邊形的對角線相交于點,,則下列條件中不能判定四邊形為平行四邊形的是( )
A. B. C. D.
【答案】B
【解析】
選項A,由“一組對邊平行且相等的四邊形是平行四邊形”可得出四邊形ABCD是平行四邊形;選項B,由AB∥CD、AD=BC無法證出四邊形ABCD是平行四邊形.選項C,由“兩組對邊分別平行的四邊形是平行四邊形”可得出四邊形ABCD是平行四邊形;選項D,由AB∥CD可得出∠BAO=∠DCO、∠ABO=∠CDO,結(jié)合OA=OC可證出△ABO≌△CDO(AAS),根據(jù)全等三角形的性質(zhì)可得出AB=CD,由“一組對邊平行且相等的四邊形是平行四邊形”可得出四邊形ABCD是平行四邊形;由此即可解答.
選項A,∵AB∥CD、AB=CD,∴四邊形ABCD是平行四邊形;
選項B,由AB∥CD、AD=BC無法證出四邊形ABCD是平行四邊形.
選項C,∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形;
選項D,∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO.
在△ABO和△CDO中, ,
∴△ABO≌△CDO(AAS),
∴AB=CD,
∴四邊形ABCD是平行四邊形;
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用總長10m的鋁合金材料做一個如圖所示的窗框(不計損耗),窗框的上部是等腰直角三角形,下部是兩個全等的矩形,窗框的總面積為3m2(材料的厚度忽略不計).若設(shè)等腰直角三角形的斜邊長為xm,下列方程符合題意的是( 。
A. B.
C. =3D. =3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線 經(jīng)過 、 兩點.
(1)求拋物線的解析式;
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點D,求m的值及點D的坐標(biāo);
(3)如圖,已知點N在拋物線上,且 .
①求出點N的坐標(biāo);
②在(2)的條件下,直接寫出所有滿足 的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=與x軸交于A,C(A在C的左側(cè)),點B在拋物線上,其橫坐標(biāo)為1,連接BC,BO,點F為OB中點.
(1)求直線BC的函數(shù)表達(dá)式;
(2)若點D為拋物線第四象限上的一個動點,連接BD,CD,點E為x軸上一動點,當(dāng)△BCD的面積的最大時,求點D的坐標(biāo),及|FE﹣DE|的最大值;
(3)如圖2,若點G與點B關(guān)于拋物線對稱軸對稱,直線BG與y軸交于點M,點N是線段BG上的一動點,連接NF,MF,當(dāng)∠NFO=3∠BNF時,連接CN,將直線BO繞點O旋轉(zhuǎn),記旋轉(zhuǎn)中的直線BO為B′O,直線B′O與直線CN交于點Q,當(dāng)△OCQ為等腰三角形時,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在等腰直角三角形中,,,D,E分別在上,且,此時有,.
(1)如圖①中 繞點A旋轉(zhuǎn)至如圖②時上述結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.
(2)將圖①中的繞點A旋轉(zhuǎn)至DE與直線AC垂直,直線BD交CE于點F,若,,請畫出圖形,并求出BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“驢友”小明分三次從M地出發(fā)沿著不同的線路線,B線,C線去N地在每條線路上行進(jìn)的方式都分為穿越叢林、涉水行走和攀登這三種他涉水行走4小時的路程與攀登6小時的路程相等線、C線路程相等,都比A線路程多,A線總時間等于C線總時間的,他用了3小時穿越叢林、2小時涉水行走和2小時攀登走完A線,在B線中穿越叢林、涉水行走和攀登所用時間分別比A線上升了,,,若他用了x小時穿越叢林、y小時涉水行走和z小時攀登走完C線,且x,y,z都為正整數(shù),則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個直角三角形紙片OAB,其中∠AOB=90°,OA=2,OB=4.如圖,將該紙片放置在平面直角坐標(biāo)系中,折疊該紙片,折痕與邊OB交于點C,與邊AB交于點D.
(1)若折疊后使點B與點A重合,求點C的坐標(biāo);
(2)若折疊后點B落在邊OA上的點為B′,設(shè)OB′=x,OC=y,試寫出y關(guān)于x的函數(shù)解析式,并確定y的取值范圍;
(3)若折疊后點B落在邊OA上的點為B′,且使B′D//OB,求此時點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象交于A(a,-2),B兩點.
(1)求反比例函數(shù)的表達(dá)式和點B的坐標(biāo);
(2)P是第一象限內(nèi)反比例函數(shù)圖象上一點,過點P作y軸的平行線,交直線AB于點C,連接PO,若△POC的面積為3,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com