如圖,將△ABC沿BC方向平移得到△DCE,連接AD,下列條件能夠判定四邊形ABCD為菱形的是
A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°
A

試題分析:∵將△ABC沿BC方向平移得到△DCE,
∴ABCD!嗨倪呅蜛BCD為平行四邊形。
∴當(dāng)AB=BC時(shí),平行四邊形ABCD是菱形。故選A。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的。下面是一個(gè)案例,請(qǐng)補(bǔ)充完整。

原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由。
(1)思路梳理
∵AB=CD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合。
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線。
根據(jù)    ,易證△AFG≌    ,得EF=BE+DF。
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°,點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系    時(shí),仍有EF=BE+DF。
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°。猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四邊形ABCD是平行四邊形,P、Q是對(duì)角線BD上的兩個(gè)點(diǎn),且AP∥QC.求證:BP=DQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在邊長為2的正方形ABCD中,M為邊AD的中點(diǎn),延長MD至點(diǎn)E,使ME=MC,以DE為邊作正方形DEFG,點(diǎn)G在邊CD上,則DG 的長為
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,∠ABC=90°,BD為AC的中線,過點(diǎn)C作CE⊥BD于點(diǎn)E,過點(diǎn)A作BD的平行線,交CE的延長線于點(diǎn)F,在AF的延長線上截取FG=BD,連接BG、DF.若AG=13,CF=6,則四邊形BDFG的周長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,下列結(jié)論中錯(cuò)誤的是【   】
A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別是AO、AD的中點(diǎn),若AB=6cm,BC=8cm,則△AEF的周長=   cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2013年四川攀枝花4分)如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點(diǎn),DE與AB交于點(diǎn)G,EF與AC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=BD
其中正確結(jié)論的為   (請(qǐng)將所有正確的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,在正方形ABCD中,P是對(duì)角線AC上的一點(diǎn),點(diǎn)E在BC的延長線上,且PE=PB.

(1)求證:△BCP≌△DCP;
(2)求證:∠DPE=∠ABC;
(3)把正方形ABCD改為菱形,其它條件不變(如圖②),若∠ABC=58°,則∠DPE=   度.

查看答案和解析>>

同步練習(xí)冊(cè)答案