【題目】、兩地在一直線上,且相距,甲、乙兩人同時從、出發(fā),分別沿射線、行進(jìn),其中甲的速度為,設(shè)他們出發(fā)時,甲、乙兩人離地的距離分別為、,與的部分函數(shù)圖象如圖所示:
(1)分別寫出,與之間的函數(shù)關(guān)系式;
(2)在所給的平面直角坐標(biāo)系中畫出(1)中的函數(shù)圖象,直接寫出、的圖象交點(diǎn)坐標(biāo)并解釋其實(shí)際意義.
【答案】(1),;(2)見解析
【解析】
(1)根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得,與之間的函數(shù)關(guān)系式;
(2)根據(jù)(1)中的函數(shù)解析式可以畫出相應(yīng)的函數(shù)圖象,寫出、的圖象交點(diǎn)坐標(biāo)并解釋其實(shí)際意義.
解:(1)由題意可得,
與之間的函數(shù)關(guān)系式是,
乙的速度為:,
則與之間的函數(shù)關(guān)系式是;
(2)函數(shù)圖象如圖所示,
令,得,,
即、的圖象交點(diǎn)坐標(biāo)為,,實(shí)際意義是甲和乙行駛時,他們離地的距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形紙片ABCD中,AB=8,將紙片折疊,折痕的一個端點(diǎn)F在邊AD上,另一個端點(diǎn)G在邊BC上,頂點(diǎn)B的對應(yīng)點(diǎn)為E.
(1)如圖(1),當(dāng)頂點(diǎn)B的對應(yīng)點(diǎn)E落在邊AD上時.
①連接BF,試判斷四邊形BGEF是怎樣的特殊四邊形,并說明理由;
②若BG=10,求折痕FG的長;
(2)如圖(2),當(dāng)頂點(diǎn)B的對應(yīng)點(diǎn)E落在長方形內(nèi)部,E到AD的距離為2,且BG=10時,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請求出點(diǎn)P的坐標(biāo);
(3)有一個點(diǎn)M從點(diǎn)A出發(fā),以每秒1個單位的速度在AB上向點(diǎn)B運(yùn)動,另一個點(diǎn)N從點(diǎn)D與點(diǎn)M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運(yùn)動,當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時,點(diǎn)M、N同時停止運(yùn)動,問點(diǎn)M、N運(yùn)動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的邊OA在x軸上,將平行四邊形沿對角線AC對折,AO的對應(yīng)線段為AD,且點(diǎn)D,C,O在同一條直線上,AD與BC交于點(diǎn)E.
(1)求證:△ABC≌△CDA.
(2)若直線AB的函數(shù)表達(dá)式為,求三角線ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,動點(diǎn)P、Q分別以3cm/s,2cm/s的速度從點(diǎn)A,C同時出發(fā),點(diǎn)Q從點(diǎn)C向點(diǎn)D移動.
(1)設(shè)運(yùn)動時間為秒,則AP= cm,DQ= cm;
(2)若點(diǎn)P從點(diǎn)A移動到點(diǎn)B停止,點(diǎn)Q隨點(diǎn)P的停止而停止移動,點(diǎn)P,Q分別從點(diǎn)A,C同時出發(fā),問經(jīng)過多長時間P,Q兩點(diǎn)之間的距離是10cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從如圖所示的二次函數(shù)的圖象中,觀察得出下面五條信息:①;②;③;④;⑤.你認(rèn)為其中正確信息的個數(shù)為( )
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
麗麗這學(xué)期學(xué)習(xí)了軸對稱的知識,知道了像角、等腰三角形、正方形、圓等圖形都是軸對稱圖形.類比這一特性,麗麗發(fā)現(xiàn)像m+n,mnp,等代數(shù)式,如果任意交換兩個字母的位置,式子的值都不變.太神奇了!于是她把這樣的式子命名為神奇對稱式.
她還發(fā)現(xiàn)像,(m-1)(n-1)等神奇對稱式都可以用表示.例如:.于是麗麗把稱為基本神奇對稱式 .
請根據(jù)以上材料解決下列問題:
(1)代數(shù)式① , ② , ③, ④ xy + yz + zx中,屬于神奇對稱式的是__________(填序號);
(2)已知.
① q=__________(用含m,n的代數(shù)式表示);
② 若,則神奇對稱式=__________;
③ 若 ,求神奇對稱式的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以直角的斜邊AB,直角邊AC為邊向外作等邊和等邊,F為AB的中點(diǎn),DE與AB交于點(diǎn)G,EF與AC交于點(diǎn)H,,.給出如下結(jié)論:
①EF⊥AC; ②四邊形ADFE為菱形; ③; ④;
其中正確結(jié)論的是( )
A. ①②③B. ②③④C. ①③④D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某新型高科技商品,每件的售價比進(jìn)價多6元,5件的進(jìn)價相當(dāng)于4件的售價,每天可售出200件,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件商品漲價1元,每天就會少賣5件.
(1)該商品的售價和進(jìn)價分別是多少元?
(2)設(shè)每天的銷售利潤為w元,每件商品漲價x元,則當(dāng)售價為多少元時,該商品每天的銷售利潤最大,最大利潤為多少元?
(3)為增加銷售利潤,營銷部推出了以下兩種銷售方案:方案一:每件商品漲價不超過8元;方案二:每件商品的利潤至少為24元,請比較哪種方案的銷售利潤更高,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com