【題目】如圖,AB是半圓O的直徑,按以下步驟作圖:
(1)分別以A,B為圓心,大于AO長為半徑作弧,兩弧交于點P,連接OP與半圓交于點C;
(2)分別以A,C為圓心,大于AC長為半徑作弧,兩弧交于點Q,連接OQ與半圓交于點D;
(3)連接AD,BD,BC,BD與OC交于點 E.根據(jù)以上作圖過程及所作圖形,下列結(jié)論:①BD平分∠ABC;②BC∥OD;③CE=OE;④AD2=ODCE;所有正確結(jié)論的序號是( 。
A.①②B.①④C.②③D.①②④
【答案】D
【解析】
由作圖可知,OP垂直平分線段AB,OQ平分∠AOC,利用平行線的判定,相似三角形的性質(zhì)一一判斷即可.
解:由作圖可知,OP垂直平分線段AB,OQ平分∠AOC,連接CD,
∴,
∴∠ABD=∠CBD,
即BD平分∠ABC,故①正確;
∵OP⊥AB,
∴∠AOC=∠BOC=90°,
∴∠AOD=∠AOC=45°,
∵OB=OC,
∴∠OBC=45°,
∴∠AOD=∠OBC=45°,
∴OD∥BC,故②正確;
由OD∥BC,
∴=<1,
∴OE<EC,故③錯誤;
∵∠DCE=∠DCO,∠CDE=∠COD=45°,
∴△DCE∽△OCD,
∴=,
∴CD2=ODCE,
∵,
∴AD=CD,
∴AD2=ODCE,故④正確.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點A、點B,與X軸交于點C,其中點A(﹣1,3)和點B(﹣3,n).
(1)填空:m= ,n= .
(2)求一次函數(shù)的解析式和△AOB的面積.
(3)根據(jù)圖象回答:當x為何值時,kx+b≥(請直接寫出答案) .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過的三個頂點,其中點,點,軸,點是直線下方拋物線上的動點.
(1)求拋物線的解析式;
(2)過點且與軸平行的直線與直線、分別交與點、,當四邊形的面積最大時,求點的坐標;
(3)當點為拋物線的頂點時,在直線上是否存在點,使得以、、為頂點的三角形與相似,若存在,直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點P,D分別是BC,AC邊上的點,且∠APD=∠B.
(1)求證:△ABP∽△PCD;
(2)若AB=10,BC=12,當PD∥AB時,求BP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2-ax+1,y2=ax2-ax-1(其中a為常數(shù),且a>0).
(1)請寫出三條與上述拋物線有關(guān)的不同類型的結(jié)論;
(2)當a=時,設y1=-ax2-ax+1與x軸分別交于M,N兩點(M在N的左邊),y2=ax2-ax-1與x軸分別交于E,F兩點(E在F的左邊),觀察M,N,E,F四點坐標,請寫出一個你所得到的正確結(jié)論,并說明理由;
(3)設上述兩條拋物線相交于A,B兩點,直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過A,B兩點,l在直線l1,l2之間,且l與兩條拋物線分別交于C,D兩點,求線段CD的最大值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過,兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.
(1)求該拋物線的表達式;
(2)點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.
①當點P在直線BC的下方運動時,求的面積的最大值;
②該拋物線上是否存在點P,使得若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與軸交于點,與反比例函數(shù)在第一象限內(nèi)的圖象交于點,且點的橫坐標為.過點作軸交反比例函數(shù)的圖象于點,連接.
(1)求反比例函數(shù)的表達式.
(2)求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,山坡上有一棵樹AB,樹底部B點到山腳C點的距離BC為米,山坡的坡角為30°.小寧在山腳的平地F處測量這棵樹的高,點C到測角儀EF的水平距離CF=1米,從E處測得樹頂部A的仰角為45°,樹底部B的仰角為20°,求樹AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com