如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長(zhǎng)線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF.
(1)判斷AF與⊙O的位置關(guān)系并說明理由;
(2)若⊙O的半徑為4,AF=3,求AC的長(zhǎng).

【答案】分析:(1)AF為為圓O的切線,理由為:練級(jí)OC,由PC為圓O的切線,利用切線的性質(zhì)得到CP垂直于OC,由OF與BC平行,利用兩直線平行內(nèi)錯(cuò)角相等,同位角相等,分別得到兩對(duì)角相等,根據(jù)OB=OC,利用等邊對(duì)等角得到一對(duì)角相等,等量代換得到一對(duì)角相等,再由OC=OA,OF為公共邊,利用SAS得出三角形AOF與三角形COF全等,由全等三角形的對(duì)應(yīng)角相等及垂直定義得到AF垂直于OA,即可得證;
(2)由AF垂直于OA,在直角三角形AOF中,由OA與AF的長(zhǎng),利用勾股定理求出OF的長(zhǎng),而OA=OC,OF為角平分線,利用三線合一得到E為AC中點(diǎn),OE垂直于AC,利用面積法求出AE的長(zhǎng),即可確定出AC的長(zhǎng).
解答:解:(1)AF為圓O的切線,理由為:
連接OC,
∵PC為圓O切線,
∴CP⊥OC,
∴∠OCP=90°,
∵OF∥BC,
∴∠AOF=∠B,∠COF=∠OCB,
∵OC=OB,
∴∠OCB=∠B,
∴∠AOF=∠COF,
∵在△AOF和△COF中,

∴△AOF≌△COF(SAS),
∴∠OAF=∠OCF=90°,
則AF為圓O的切線;

(2)∵△AOF≌△COF,
∴∠AOF=∠COF,
∵OA=OC,
∴E為AC中點(diǎn),即AE=CE=AC,OE⊥AC,
∵OA⊥AF,
∴在Rt△AOF中,OA=4,AF=3,
根據(jù)勾股定理得:OF=5,
∵S△AOF=•OA•AF=•OF•AE,
∴AE=,
則AC=2AE=
點(diǎn)評(píng):此題考查了切線的判定與性質(zhì),涉及的知識(shí)有:全等三角形的判定與性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),三角形的面積求法,熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鐵嶺)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長(zhǎng)線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF.
(1)判斷AF與⊙O的位置關(guān)系并說明理由;
(2)若⊙O的半徑為4,AF=3,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年河南南陽新野縣文府書院九年級(jí)第一學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長(zhǎng)線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF.

(1)判斷AF與⊙O的位置關(guān)系并說明理由;

(2)若⊙O的半徑為4,AF=3,求AC的長(zhǎng).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(遼寧鐵嶺卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長(zhǎng)線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF.

(1)判斷AF與⊙O的位置關(guān)系并說明理由;

(2)若⊙O的半徑為4,AF=3,求AC的長(zhǎng).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長(zhǎng)線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF.
(1)判斷AF與⊙O的位置關(guān)系并說明理由;
(2)若⊙O的半徑為4,AF=3,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案