【題目】某校某年級秋游,若租用48座客車若干輛,則正好坐滿;若租用64座客車,則能少租1輛,且有一輛車沒有坐滿,但超過一半.
(1)需租用48座客車多少輛? 解:設需租用48座客車x輛.則需租用64座客車輛.當租用64座客車時,未坐滿的那輛車還有個空位(用含x的代數(shù)式表示).由題意,可得不等式組:解這個不等式組,得: .
因此,需租用48座客車輛.
(2)若租用48座客車每輛250元,租用64座客車每輛300元,應租用哪種客車較合算?
【答案】
(1)(x﹣1);(16x﹣64);;4<x<6;5
(2)解:租用48座客車所需費用為5×250=1250(元),
租用64座客車所需費用為(5﹣1)×300=1200(元),
∵1200<1250,∴租用64座客車較合算.
因此租用64座客車較合算
【解析】解:(1)設需租用48座客車x輛.則需租用64座客車(x﹣1)輛.當租用64座客車時,未坐滿的那輛車還有(16x﹣64)個空位(用含x的代數(shù)式表示).由題意,可得不等式組:
解得:4<x<6.
∵x為整數(shù),
∴x=5.
因此需租用48座客車5輛.
所以答案是:(x﹣1),(16x﹣64), ,4<x<6,5.
【考點精析】關于本題考查的一元一次不等式組的應用,需要了解1、審:分析題意,找出不等關系;2、設:設未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(﹣m,n),B(0,m),且m、n滿足+(n﹣5)2=0,點C在y軸上,將△ABC沿y軸折疊,使點A落在點D處.
(1)寫出D點坐標并求A、D兩點間的距離;
(2)若EF平分∠AED,若∠ACF﹣∠AEF=20°,求∠EFB的度數(shù);
(3)過點C作QH平行于AB交x軸于點H,點Q在HC的延長線上,AB交x軸于點R,CP、RP分別平分∠BCQ和∠ARX,當點C在y軸上運動時,∠CPR的度數(shù)是否發(fā)生變化?若不變,求其度數(shù);若變化,求其變化范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.相等的角是對頂角
B.在同一平面內(nèi),不平行的兩條直線一定互相垂直
C.點P(2,﹣3)在第四象限
D.一個數(shù)的算術平方根一定是正數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個大小一樣的直角三角形重疊在一起,將其中一個三角形沿著點B到點C的方向平移到的位置,AB=12cm,DH=4cm,平移的距離是8cm,則陰影面積是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,對于P(x,y)作變換得到P′(﹣y+1,x+1),例如:A1(3,1)作上述變換得到A2(0,4),再將A2做上述變換得到A3___________,這樣依次得到A1,A2,A3,…An;…,則A2018的坐標為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小國同學的父親參加旅游團到某地旅游,準備買某種禮物送給小國.據(jù)了解,沿旅游線路依次有A、B、C三個地點可以買到此種禮物,其質量相當,價格各不相同,但不知哪家更便宜.由于時間關系,隨團旅游車不會掉頭行駛.
(1)若到A處就購買,寫出買到最低價格禮物的概率;
(2)小國同學的父親認為,如果到A處不買,到B處發(fā)現(xiàn)比A處便宜就馬上購買,否則到C處購買,這樣更有希望買到最低價格的禮物.這個想法是否正確?試通過樹狀圖分析說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平行四邊形ABCD,DE是∠ADC的角平分線,交BC于點E.
(1)求證:CD=CE;
(2)若BE=CE,∠B=80°,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了更好地保護美麗如畫的邛海濕地,西昌市污水處理廠決定先購買A,B兩種型號的污水處理設備共20臺,對邛海濕地周邊污水進行處理.每臺A型污水處理設備12萬元,每臺B型污水處理設備10萬元.已知1臺A型污水處理設備和2臺B型污水處理設備每周可以處理污水640 t,2臺A型污水處理設備和3臺B型污水處理設備每周可以處理污水1 080 t.
(1)求A,B兩種型號的污水處理設備每周每臺分別可以處理污水多少噸.
(2)經(jīng)預算,市污水處理廠購買設備的資金不超過230萬元,每周處理污水的量不低于4 500 t,請你列舉出所有購買方案,并指出哪種方案所需資金最少,最少是多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com