【題目】十一黃金周某一天,甲、乙兩名學(xué)生去距家36千米的風(fēng)景區(qū)游玩,他們從家出發(fā),騎電動(dòng)車行駛20分鐘時(shí)發(fā)現(xiàn)忘帶相機(jī),甲下車步行前往,乙騎電動(dòng)車按原路返回,乙取到相機(jī)后(在家取相機(jī)所用時(shí)間忽略不計(jì)),騎電動(dòng)車追甲,在距風(fēng)景區(qū)13.5千米處追上甲并同車前往風(fēng)景區(qū),若電動(dòng)車速度始終不變.設(shè)甲與家相距(千米),乙與家相距(千米),甲離開家的時(shí)間為 (分鐘),、x之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問題:

1)求電動(dòng)車的速度;

2)求出甲步行的時(shí)間是多少分鐘?;

3)求乙返回到家時(shí),甲與家相距多遠(yuǎn)?

【答案】1)電動(dòng)車的速度0.9千米/分鐘;(2)甲步行的時(shí)間是45分鐘;(3)乙返回到家時(shí),甲與家相距20km

【解析】

1)根據(jù)圖象由速度=路程÷時(shí)間就可以求出結(jié)論;
2)先求出乙追上甲所用的時(shí)間,再加上乙返回家所用的時(shí)間就是甲步行所用的時(shí)間.
3)先根據(jù)第二問的結(jié)論求出甲步行的速度,就可以求出乙回到家時(shí),甲與家的距離.

解:(1)由圖象,得18÷20=0.9
所以電動(dòng)車的速度0.9千米/分鐘;
2)乙從家追上甲所用的時(shí)間為:(36-13.5÷0.9=25分鐘,
∴甲步行所用的時(shí)間為:20+25=45分鐘.
故甲步行的時(shí)間是45分鐘;
3)由題意,得
甲步行的速度為:(36-13.5-18÷45=0.1千米/分.
乙返回到家時(shí),甲與家的距離為:18+0.1×20=20千米.
答:乙返回到家時(shí),甲與家相距20km

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ADBC,AD=5,B-3,0),C9,0),點(diǎn)EBC的中點(diǎn),點(diǎn)P是線段BC上一動(dòng)點(diǎn),當(dāng)PB=________時(shí),以點(diǎn)P、A、DE為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形AOBC中,OB=4,OA=3.分別以OB,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標(biāo)系.FBC邊上一個(gè)動(dòng)點(diǎn)(不與B,C重合),過點(diǎn)F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點(diǎn)E.

(1)當(dāng)點(diǎn)F運(yùn)動(dòng)到邊BC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);

(2)連接EF,求∠EFC的正切值;

(3)如圖2,將CEF沿EF折疊,點(diǎn)C恰好落在邊OB上的點(diǎn)G處,求此時(shí)反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ACB90°,ACBC,直線l經(jīng)過點(diǎn)CBDl,AEl,,垂足分別為D、E

1)當(dāng)AB在直線l同側(cè)時(shí),如圖1

證明:AECCDB;

②若AE=3,BD=4,計(jì)算△ACB的面積.(提示:間接求)

(2)當(dāng)A. B在直線l兩側(cè)時(shí),如圖2,若AE=3BD=4,連接AD,BE直接寫出梯形ADBE的面積___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB=AC,AD=AE,∠BAC=DAE,∠1=25°,∠2=30°

1)求證△ABD≌△ACE

2)求∠3度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且DE=2.將△ADE沿AE對(duì)折得到△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,則BG=___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:將矩形紙片ABCD折疊,使點(diǎn)A與點(diǎn)C重合(點(diǎn)D與D'為對(duì)應(yīng)點(diǎn)),折痕為EF,連接AF.

(1)如圖1,求證:四邊形AECF為菱形;

(2)如圖2,若FC=2DF,連接AC交EF于點(diǎn)O,連接DO、D'O,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中所有等邊三角形.

(圖1) (圖2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,小聰同學(xué)利用直尺和圓規(guī)完成了如下操作:

①作的平分線于點(diǎn)

②作邊的垂直平分線,相交于點(diǎn)

③連接,.

請(qǐng)你觀察圖形解答下列問題:

(1)線段,,之間的數(shù)量關(guān)系是________;

(2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中,點(diǎn)DBC邊上(不與點(diǎn)B、點(diǎn)C重合),點(diǎn)EAC的延長(zhǎng)線上,DE=DA(如圖1).

(1)求證:∠BAD=∠EDC;

(2)點(diǎn)E關(guān)于直線BC的對(duì)稱點(diǎn)為M,連接DM,AM.

依題意將圖2補(bǔ)全;

若點(diǎn)DBC邊上運(yùn)動(dòng),DAAM始終相等嗎?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案